×

HKR theorem for smooth \(S\)-algebras. (English) Zbl 1051.55005

The “HKR” theorem of the title is an extension of the Hochschild-Kostant-Rosenberg theorem which says that, if \(k\) is a commutative ring, the Hochschild homology of a smooth \(k\)-algebra is given by the differential forms. The context of this paper is that of commutative ring spectra, or commutative \(S\)-algebras.
The authors give a definition of (thh-)étale and smooth maps extending the usual definitions, and prove the HKR-theorem: If \(f\colon R\to A\) is a thh-smooth map in the category of connective commutative \(S\)-algebras, then the derivative map \[ THH(A| R)\to \Sigma TAQ(A| R) \] has a section in the category of \(A\)-modules which induces an equivalence of \(A\)-algebras \[ \mathbb P_A\Sigma\, {TAQ}(A| R)@>\sim>>THH(A| R) \] where \(\mathbb P_A\) is the symmetric algebra triple.
A key result in the paper is the “étale descent formula”, i.e. the authors give conditions implying that the claim that a map \(A\to B\) of commutative \(R\)-algebras is thh-étale is equivalent to claiming that the map \[ (A\otimes_RX)\wedge_AB\to B\otimes_RX \] is an equivalence.

MSC:

55P43 Spectra with additional structure (\(E_\infty\), \(A_\infty\), ring spectra, etc.)
13D03 (Co)homology of commutative rings and algebras (e.g., Hochschild, André-Quillen, cyclic, dihedral, etc.)

References:

[1] Basterra, M., Andre-Quillen cohomology of commutative \(S\)-algebras, J. Pure Appl. Algebra, 144, 111-143 (1999) · Zbl 0937.55006
[2] Cartan, H.; Eilenberg, S., Homological Algebra (1996), Princeton University Press: Princeton University Press Princeton, NJ
[3] Dwyer, W. G.; Spalinski, J., Homotopy theories and model categories, (James, I. M., A Handbook of Algebraic Topology (1995), Elsevier Science: Elsevier Science Amsterdam) · Zbl 0869.55018
[4] D. Eisenbud, Commutative Algebra with a view Toward Algebraic Geometry, Vol. 150, Springer, New York, Berlin, Heidelberg, 1996.; D. Eisenbud, Commutative Algebra with a view Toward Algebraic Geometry, Vol. 150, Springer, New York, Berlin, Heidelberg, 1996. · Zbl 0819.13001
[5] A.D. Elmendorf, I. Kriz, M.A. Mandell, J.P. May, Rings, Modules, and Algebras in Stable Homotopy Theory, Mathematical Surveys and Monographs, Vol. 47, American Mathematical Society, Providence, RI, 1996.; A.D. Elmendorf, I. Kriz, M.A. Mandell, J.P. May, Rings, Modules, and Algebras in Stable Homotopy Theory, Mathematical Surveys and Monographs, Vol. 47, American Mathematical Society, Providence, RI, 1996. · Zbl 0894.55001
[6] Geller, S. C.; Weibel, C. A., Étale descent for Hochschild and cyclic homology, Comment. Math. Helv., 66, 368-388 (1991) · Zbl 0741.19007
[7] B. Johnson, R. McCarthy, Deriving Calculus with Cotriples, 2003, to appear in Trans. Amer. Math. Soc.; B. Johnson, R. McCarthy, Deriving Calculus with Cotriples, 2003, to appear in Trans. Amer. Math. Soc. · Zbl 1028.18004
[8] J.-L. Loday, Cyclic Homology, Grundlehrender Mathematischen Wissenschaften, Vol. 301. Springer, New York, Berlin, 1992.; J.-L. Loday, Cyclic Homology, Grundlehrender Mathematischen Wissenschaften, Vol. 301. Springer, New York, Berlin, 1992. · Zbl 0780.18009
[9] Mandell, M. A., \(E_∞\) algebras and \(p\)-adic homotopy theory, Topology, 40, 43-94 (2001) · Zbl 0974.55004
[10] M.A. Mandell, Private communications, 2002.; M.A. Mandell, Private communications, 2002.
[11] J.P. May, A general algebraic approach to Steenrod operations, Steenrod Algebra and its Applications: A Conference to Celebrate N.E. Steenrod’s Sixtieth Birthday, Lecture Notes, Vol. 168, Springer, Berlin, 1997, pp. 153-231.; J.P. May, A general algebraic approach to Steenrod operations, Steenrod Algebra and its Applications: A Conference to Celebrate N.E. Steenrod’s Sixtieth Birthday, Lecture Notes, Vol. 168, Springer, Berlin, 1997, pp. 153-231. · Zbl 0242.55023
[12] McClure, J.; Schwänzl, R.; Vogt, R., \( THH (R)\)≅ \(R⊗ S^1\) for \(E_∞\) ring spectra, J. Pure Appl. Algebra, 121, 137-159 (1997) · Zbl 0885.55004
[13] V. Minasian, André-Quillen spectral sequence for THH; V. Minasian, André-Quillen spectral sequence for THH · Zbl 1061.55008
[14] J. Rognes, Algebraic \(K\) http://www.math.uio.no/rognes/lectures.html; J. Rognes, Algebraic \(K\) http://www.math.uio.no/rognes/lectures.html
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.