×

Tikhonov regularization methods for inverse variational inequalities. (English) Zbl 1310.90113

Summary: The purpose of this paper is to study Tikhonov regularization methods for inverse variational inequalities. A rather weak coercivity condition is given which guarantees that the solution set of regularized inverse variational inequality is nonempty and bounded. Moreover, the perturbation analysis for the solution set of regularized inverse variational inequality is established. As an application, we show that solutions of regularized inverse variational inequalities form a minimizing sequence of the D-gap function under a mild condition.

MSC:

90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
Full Text: DOI

References:

[1] Aubin, J.P.: Optima and Equilibria. Springer, Berlin (1993) · Zbl 0781.90012
[2] Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003) · Zbl 1062.90002
[3] Gowda, M.S., Pang, J.-S.: Stability analysis of variational inequalities and nonlinear complementarity problems, via the mixed linear complementarity problem and degree theory. Math. Oper. Res. 19(4), 831–879 (1994) · Zbl 0821.90114 · doi:10.1287/moor.19.4.831
[4] He, Y.R.: Stable pseudomonotone variational inequality in reflexive Banach spaces. J. Math. Anal. Appl. 330, 352–363 (2007) · Zbl 1124.49005 · doi:10.1016/j.jmaa.2006.07.063
[5] He, Y.R.: Tikhonov regularization methods for set-valued variational inequalities. http://teacher.sicnu.edu.cn/upload/yrhe/file/507546861.pdf · Zbl 1237.49013
[6] Harker, P.T., Pang, J.-S.: Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. Math. Program. 48(2(Ser. B)), 161–220 (1990) · Zbl 0734.90098 · doi:10.1007/BF01582255
[7] He, B.S.: Inexact implicit methods for monotone general variational inequalities. Math. Program. 86, 199–217 (1999) · Zbl 0979.49006 · doi:10.1007/s101070050086
[8] He, B.S., Liu, H.X.: Inverse variational inequalities in the economic field: applications and algorithms, September 2006. Sciencepaper Online ( http://www.paper.edu.cn/downloadpaper.php?number=200609–260 ) (in Chinese)
[9] He, B.S., Liu, H.X., Li, M., He, X.Z.: PPA-base methods for monotone inverse variational inequalities, June 2006. Sciencepaper Online ( http://www.paper.edu.cn/process/download.jsp?file=200606–219 )
[10] He, B.S., He, X.Z., Liu, H.X.: Solving a class of constrained ’black-box’ inverse variational inequalities. Eur. J. Oper. Res. 204(3), 391–401 (2010) · Zbl 1181.91148 · doi:10.1016/j.ejor.2009.07.006
[11] He, X.Z., Liu, H.X.: Inverse variational inequalities with projection-based solution methods. Eur. J. Oper. Res. 208(1), 12–18 (2011) · Zbl 1208.90168 · doi:10.1016/j.ejor.2010.08.022
[12] Hu, R., Fang, Y.P.: Well-posedness of inverse variational inequalities. J. Convex Anal. 15(2), 427–437 (2008) · Zbl 1146.49023
[13] Hu, R., Fang, Y.P.: Levitin-Polyak well-posedness by perturbations of inverse variational inequalities. Optim. Lett. 7(2), 343–359 (2013) · Zbl 1288.90106 · doi:10.1007/s11590-011-0423-y
[14] Hung, P.G., Muu, L.D.: The Tikhonov regularization extended to equilibrium problems involving pseudomonotone bifunctions. Nonlinear Anal. 74, 6121–6129 (2011) · Zbl 1262.47084 · doi:10.1016/j.na.2011.05.091
[15] Konnov, I.V.: On the convergence of a regularization method for variational inequalities. Comput. Math. Math. Phys. 46(1), 541–547 (2006) · Zbl 1210.49011 · doi:10.1134/S0965542506040026
[16] Konnov, I.V.: Regularization method for nonmonotone equilibrium problems. J. Nonlinear Convex Anal. 10, 93–101 (2009) · Zbl 1162.49010
[17] Konnov, I.V., Dyabilkin, D.A.: Nonmonotone equilibrium problems: coercivity conditions and weak regularization. J. Global Optim. 49, 575–587 (2011) · Zbl 1242.90262 · doi:10.1007/s10898-010-9551-7
[18] Kanzow, C., Fukushima, M.: Theoretical and numerical investigation of the D-gap function for box constrained variational inequalities. Math. Program. 83, 55–87 (1998) · Zbl 0920.90134
[19] Pang, J.-S., Yao, J.C.: On a generalization of a normal map and equation. SIAM J. Control Optim. 33, 168–184 (1995) · Zbl 0827.90131 · doi:10.1137/S0363012992241673
[20] Qi, H.D.: Tikhonov regularization methods for variational inequality problems. J. Optim. Theory Appl. 102(1), 193–201 (1999) · Zbl 0939.90019 · doi:10.1023/A:1021802830910
[21] Rockafellar, R.T.: Convex Anal. Princeton University Press, Princeton (1970) · Zbl 0193.18401
[22] Ravindran, G., Gowda, M.S.: Regularization of $$P_0$$ -function in box variational inequality problems. SIAM J. Optim. 11(3), 748–760 (2000) · Zbl 1010.90083 · doi:10.1137/S1052623497329567
[23] Scrimali, L.: An inverse variational inequality approach to the evolutionary spatial price equilibrium problem. Optim. Eng. 13(3), 375–387 (2012) · Zbl 1293.91116 · doi:10.1007/s11081-011-9152-4
[24] Yamashita, N., Taji, K., Fukushima, M.: Unconstrained optimization reformulations of variational inequality problems. J. Optim. Theory Appl. 92(3), 439–456 (1997) · Zbl 0879.90180 · doi:10.1023/A:1022660704427
[25] Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific Publishing Co. Inc., River Edge (2002) · Zbl 1023.46003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.