Skip to main content
Log in

On the convergence of a regularization method for variational inequalities

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

For variational inequalities in a finite-dimensional space, the convergence of a regularization method is examined in the case of a nonmonotone basic mapping. It is shown that a fairly general sufficient condition for the existence of solutions to the original problem also guarantees the convergence and existence of solutions to perturbed problems. Examples of applications to problems on order intervals are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Nagurney, Network Economics: A Variational Inequality Approach (Kluwer, Dordrecht, 1993).

    Google Scholar 

  2. I. V. Konnov, Combined Relaxation Methods for Variational Inequalities (Springer-Verlag, Berlin, 2001).

    Google Scholar 

  3. F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems (Springer-Verlag, Berlin, 2003), Vol. 2.

    Google Scholar 

  4. A. N. Tikhonov, “On the Solution of Ill-Posed Problems and Regularization Method,” Dokl. Akad. Nauk SSSR 151, 501–504 (1963).

    MATH  MathSciNet  Google Scholar 

  5. F. E. Browder, “Existence and Approximation of Solutions of Nonlinear Variational Inequalities,” Proc. Natl. Acad. Sci. USA. 56, 1080–1086 (1966).

    MATH  MathSciNet  Google Scholar 

  6. A. B. Bakushinskii and A. V. Goncharskii, Iterative Methods for Ill-Posed Problems (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  7. V. V. Vasin and A. L. Ageev, Ill-Posed Problems with Prior Information (Nauka, Yekaterinburg, 1993) [in Russian].

    Google Scholar 

  8. F. P. Vasil’ev, Methods for Solving Extremal Problems (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  9. O. A. Liskovets, “Regularization of Variational Inequalities with Pseudomonotone Operators on Approximately Given Domains,” Differ. Uravn. 25, 1970–1977 (1989).

    MATH  MathSciNet  Google Scholar 

  10. F. Facchinei and Ch. Kanzow, “Beyond Monotonicity in Regularization Methods for Nonlinear Complementarity Problems,” SIAM J. Control Optim. 37, 1150–1161 (1999).

    Article  MathSciNet  Google Scholar 

  11. H. D. Qi, “Tikhonov Regularization for Variational Inequality Problems,” J. Optim. Theory Appl. 102(1), 193–201 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  12. B. C. Eaves, “On the Basic Theorem of Complementarity,” Math. Program. 1(1), 68–75 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  13. J. J. Moré, “Coercivity Conditions in Nonlinear Complementarity Problems,” SIAM Rev. 17(1), 1–16 (1974).

    Google Scholar 

  14. D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications (Academic, New York, 1980; Mir, Moscow, 1983).

    Google Scholar 

  15. H. Nikaido, Convex Structures and Economic Theory (Academic, New York, 1968; Mir, Moscow, 1972).

    Google Scholar 

  16. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables (Academic, New York, 1970; Mir, Moscow, 1975).

    Google Scholar 

  17. I. V. Konnov, “Properties of Gap Functions for Mixed Variational Inequalities,” Sib. J. Numer. Math. 3(3), 259–270 (2000).

    MATH  Google Scholar 

  18. I. V. Konnov and E. O. Mazurkevich, “Model of Equilibrium under Oligopoly Conditions with Several Technologies,” in Research in Informatics (Kazan, 2003), No. 5, pp. 57–70 [in Russian].

  19. K. Okuguchi and F. Szidarovsky, The Theory of Oligopoly with Multiproduct Firms (Springer-Verlag, Berlin, 1990).

    Google Scholar 

  20. F. H. Murphy, H. D. Sherali, and A. L. Soyster, “A Mathematical Programming Approach for Determining Oligopolistic Market Equilibrium,” Math. Program. 24(1), 92–106 (1982).

    Article  MathSciNet  Google Scholar 

  21. J. B. Rosen, “Existence and Uniqueness of Equilibrium Points for Concave N-Person Games,” Econometrica 33, 520–534 (1965).

    MATH  MathSciNet  Google Scholar 

  22. C. D. Kolstad and L. Mathiesen, “Necessary and Sufficient Conditions for Uniqueness of Cournot Equilibria,” Rev. Econ. Stud. 54, 681–690 (1987).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.V. Konnov, 2006, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2006, Vol. 46, No. 4, pp. 568–575.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konnov, I.V. On the convergence of a regularization method for variational inequalities. Comput. Math. and Math. Phys. 46, 541–547 (2006). https://doi.org/10.1134/S0965542506040026

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542506040026

Keywords

Navigation