×

A stochastic recursive optimal control problem under the G-expectation framework. (English) Zbl 1308.93225

Summary: In this paper, we study a stochastic recursive optimal control problem in which the objective functional is described by the solution of a backward stochastic differential equation driven by \(G\)-Brownian motion. Under standard assumptions, we establish the dynamic programming principle and the related Hamilton-Jacobi-Bellman (HJB) equation in the framework of \(G\)-expectation. Finally, we show that the value function is the viscosity solution of the obtained HJB equation.

MSC:

93E20 Optimal stochastic control
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
35K15 Initial value problems for second-order parabolic equations

References:

[1] Buckdahn, R., Li, J.: Stochastic differential games and viscosity solutions for Hamilton-Jacobi-Bellman-Isaacs equations. SIAM J. Control Optim. 47, 444-475 (2008) · Zbl 1157.93040 · doi:10.1137/060671954
[2] Buckdahna, R., Labedb, B., Rainera, C., Tamer, L.: Existence of an optimal control for stochastic control systems with nonlinear cost functional. Stochastics: Int. J. Probab. Stoch. Process. 82, 241-256 (2010) · Zbl 1200.93137
[3] Denis, L., Martini, C.: A theoretical framework for the pricing of contingent claims in the presence of model uncertainty. Ann. Appl. Probab. 16, 827-852 (2006) · Zbl 1142.91034 · doi:10.1214/105051606000000169
[4] Denis, L., Hu, M., Peng, S.: Function spaces and capacity related to a sublinear expectation: application to \[G\] G-Brownian motion paths. Potential Anal. 34, 139-161 (2011) · Zbl 1225.60057 · doi:10.1007/s11118-010-9185-x
[5] Duffie, D., Epstein, L.: Stochastic differential utility. Econometrica 60, 353-394 (1992) · Zbl 0763.90005 · doi:10.2307/2951600
[6] El Karoui, N., Peng, S., Quenez, M.C.: Backward stochastic differential equations in finance. Math. Finance 7, 1-71 (1997) · Zbl 0884.90035 · doi:10.1111/1467-9965.00022
[7] Epstein, L., Ji, S.: Ambiguous volatility, possibility and utility in continuous time. J. Math. Econ. (2013). http://hdl.handle.net/10.1093/rfs/hht018 · Zbl 1284.91148
[8] Epstein, L., Ji, S.: Ambiguous volatility and asset pricing in continuous time. Rev. Finan. Stud. 26, 1740-1786 (2013) · doi:10.1093/rfs/hht018
[9] Fleming, W.H., Soner, H.M.: Control Markov Processes and Viscosity Solutions. Springer, New York (1993) · Zbl 0773.60070
[10] Hu, M., Ji, S., Peng, S., Song, Y.: Backward stochastic differential equations driven by G-Brownian motion. Stoch. Process. Appl. 124, 759-784 (2014) · Zbl 1300.60074 · doi:10.1016/j.spa.2013.09.010
[11] Hu, M., Ji, S., Peng, S., Song, Y.: Comparison theorem, Feynman-Kac formula and Girsanov transformation for BSDEs driven by G-Brownian motion. Stoch. Process. Appl. 124, 1170-1195 (2014) · Zbl 1300.60075 · doi:10.1016/j.spa.2013.10.009
[12] Hu, M., Peng, S.: On representation theorem of G-expectations and paths of \[G\] G-Brownian motion. Acta Math. Appl. Sin. Engl. Ser. 25, 539-546 (2009) · Zbl 1190.60043 · doi:10.1007/s10255-008-8831-1
[13] Matoussi, A., Piozin, L., Possamai, D.: Second-order BSDEs with general reflection and Dynkin games under uncertainty (2012). arXiv:1212.0476 · Zbl 1330.60074
[14] Matoussi, A., Possamai, D., Zhou, C.: Robust utility maximization in non-dominated models with 2BSDE, the uncertain volatility model. Math. Financ. (2012). arXiv:1201.0769v5 · Zbl 1335.91067
[15] Neufeld, A., Nutz, M.: Superreplication under volatility uncertainty for measurable claims (2012). arXiv:1208.6486v2 · Zbl 1282.91360
[16] Nutz, M.: Random G-expectations. Ann. Appl. Probab. 23(2013), 1755-1777 (2010) · Zbl 1273.93178
[17] Nutz, M.: A quasi-sure approach to the control of non-Markovian stochastic differential equations. Electron. J. Probab. 17, 1-23 (2012) · Zbl 1244.93176 · doi:10.1214/EJP.v17-1892
[18] Nutz, M., Zhang, J.: Optimal stopping under adverse nonlinear expectation and related games (2012). arXiv:1212.2140v1 · Zbl 1322.60047
[19] Pardoux, E., Peng, S.: Adapted solutions of backward stochastic equations. Syst. Control Lett. 14, 55-61 (1990) · Zbl 0692.93064 · doi:10.1016/0167-6911(90)90082-6
[20] Peng, S.: Filtration consistent nonlinear expectations and evaluations of contingent claims. Acta Math. Appl. Sin. 20, 1-24 (2004) · Zbl 1061.60063 · doi:10.1007/s10255-004-0161-3
[21] Peng, S.: Nonlinear expectations and nonlinear Markov chains. Chin. Ann. Math. 26B, 159-184 (2005) · Zbl 1077.60045 · doi:10.1142/S0252959905000154
[22] Peng, \[S.: G\] G-Expectation, \[G\] G-Brownian Motion and Related Stochastic Calculus of Itô Type, Stochastic Analysis and Applications, Abel Symp., 2, pp. 541-567. Springer, Berlin (2007) · Zbl 1131.60057
[23] Peng, \[S.: G\] G-Brownian motion and dynamic risk measure under volatility uncertainty (2007). arXiv:0711.2834v1 · Zbl 0884.90035
[24] Peng, S.: Multi-dimensional \[G\] G-Brownian motion and related stochastic calculus under \[G\] G-expectation. Stoch. Process. Appl. 118, 2223-2253 (2008) · Zbl 1158.60023 · doi:10.1016/j.spa.2007.10.015
[25] Peng, S.: Nonlinear expectations and stochastic calculus under uncertainty (2010). arXiv:1002.4546v1
[26] Peng, S.: Backward stochastic differential equation, nonlinear expectation and their applications. In: Proceedings of the International Congress of Mathematicians, Hyderabad (2010)
[27] Peng, S., Song, Y., Zhang, J.: A complete representation theorem for G-martingales (2012). arXiv:1201.2629v1 · Zbl 1337.60130
[28] Peng, S.: A generalized dynamic programming principle and Hamilton-Jacobi-Bellmen equation. Stoch. Stoch. Rep. 38, 119-134 (1992) · Zbl 0756.49015 · doi:10.1080/17442509208833749
[29] Peng, S.: Backward stochastic differential equations-stochastic optimization theory and viscosity solutions of HJB equations. In: Yan, J., Peng, S., Fang, S., Wu, L. (eds.) Topics on Stochastic Analysis, Science Press, Beijing, pp. 85-138 (1997) (in Chinese) · Zbl 1252.60056
[30] Pham, T., Zhang, J.: Two person zero-sum game in weak formulation and path dependent Bellman-Isaacs equation (2012). arXiv:1209.6605v1 · Zbl 1308.91029
[31] Wu, Z., Yu, Z.: Dynamic programming principle for one kind of stochastic recursive optimal control problem and Hamilton-Jacobi-Bellman equation. SIAM J. Control Optim. 47, 2616-2641 (2008) · Zbl 1171.49022 · doi:10.1137/060671917
[32] Soner, H.M., Touzi, N., Zhang, J.: Martingale representation theorem under G-expectation. Stoch. Process. Appl. 121, 265-287 (2011) · Zbl 1228.60070 · doi:10.1016/j.spa.2010.10.006
[33] Soner, H.M., Touzi, N., Zhang, J.: Quasi-sure stochastic analysis through aggregation. Electron. J. Probab. 16, 1844-1879 (2011) · Zbl 1245.60062 · doi:10.1214/EJP.v16-950
[34] Soner, H.M., Touzi, N., Zhang, J.: Wellposedness of second order backward SDEs. Probab. Theory Relat. Fields 153, 149-190 (2012) · Zbl 1252.60056 · doi:10.1007/s00440-011-0342-y
[35] Song, Y.: Some properties on G-evaluation and its applications to G-martingale decomposition. Sci. China Math. 54, 287-300 (2011) · Zbl 1225.60058 · doi:10.1007/s11425-010-4162-9
[36] Song, Y.: Uniqueness of the representation for \[G\] G-martingales with finite variation. Electron. J. Probab. 17, 1-15 (2012) · Zbl 1244.60046 · doi:10.1214/EJP.v17-1890
[37] Yong, J., Zhou, X.Y.: Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer, New York (1999) · Zbl 0943.93002
[38] Zhang, D.F.: Stochastic optimal control problems under G-expectation. Optim. Control Appl. Meth. 34, 96-110 (2013) · Zbl 1273.93180 · doi:10.1002/oca.2012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.