×

Enhancement of near-cloaking. II: The Helmholtz equation. (English) Zbl 1260.35095

Summary: The aim of this paper is to extend the method of [the authors, Commun. Math. Phys. 317, No. 1, 253–266 (2013; Zbl 1303.35108)] to scattering problems. We construct very effective near-cloaking structures for the scattering problem at a fixed frequency. These new structures are, before using the transformation optics, layered structures and are designed so that their first scattering coefficients vanish. Inside the cloaking region, any target has near-zero scattering cross section for a band of frequencies. We analytically show that our new construction significantly enhances the cloaking effect for the Helmholtz equation.

MSC:

35P25 Scattering theory for PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35Q60 PDEs in connection with optics and electromagnetic theory

Citations:

Zbl 1303.35108

References:

[1] Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. New York: Dover Publications, 9th edition, 1970, pp. 365–366
[2] Alú A., Engheta N.: Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E 72, 106623 (2005) · doi:10.1103/PhysRevE.72.016623
[3] Alú A., Engheta N.: Cloaking and transparency for collections of particles with metamaterial and plasmonic covers. Optics Express 15, 7578–7590 (2007) · doi:10.1364/OE.15.007578
[4] Ammari, H., Ciraolo, G., Kang, H., Lee, H., Milton, G.: Spectral theory of a Neumann-Poincaré-type operator and analysis of cloaking due to anomalous localized resonance. submitted, available at http://arxiv.org/abs/1109.0979v2 [math.AP], 2012
[5] Ammari H., Garnier J., Jugnon V., Kang H., Lee H., Lim M.: Enhancement of near-cloaking. Part III: Numerical simulations, statistical stability, and related questions. Contemp. Math. 577, 1–24 (2012) · Zbl 1303.35107 · doi:10.1090/conm/577/11460
[6] Ammari, H., Kang, H.: Polarization and Moment Tensors with Applications to Inverse Problems and Effective Medium Theory, Applied Mathematical Sciences, Vol. 162, New York: Springer-Verlag, 2007 · Zbl 1220.35001
[7] Ammari H., Kang H.: Boundary layer techniques for solving the Helmholtz equation in the presence of small inhomogeneities. J. Math. Anal. Appl. 296, 190–208 (2004) · Zbl 1149.35337 · doi:10.1016/j.jmaa.2004.04.003
[8] Ammari, H., Kang, H., Lee, H., Lim, M.: Enhancement of near cloaking using generalized polarization tensors vanishing structures. Part I: The conductivity problem. Commun. Math. Phys., 2012. doi: 10.1007/s00220-012-1615-8 · Zbl 1303.35108
[9] Born, M., Wolf, E.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th edition. Cambridge: Cambridge University Press, 1997 · Zbl 0086.41704
[10] Colton, D., Kress, R.: Inverse Acoustic and Electromagnctic Scaftering Theory. Berlin: Springer, 1992 · Zbl 0760.35053
[11] Bryan K., Leise T.: Impedance Imaging, inverse problems, and Harry Potter’s Cloak. SIAM Rev. 52, 359–377 (2010) · Zbl 1193.35248 · doi:10.1137/090757873
[12] Greenleaf A., Kurylev Y., Lassas M., Uhlmann G.: Approximate quantum cloaking and almost trapped states. Phys. Rev. Lett. 101, 220404 (2008) · Zbl 1257.35156 · doi:10.1103/PhysRevLett.101.220404
[13] Greenleaf A., Kurylev Y., Lassas M., Uhlmann G.: Full-wave invisibility of active devices at all frequencies. Comm. Math. Phys. 275, 749–789 (2007) · Zbl 1151.78006 · doi:10.1007/s00220-007-0311-6
[14] Greenleaf A., Kurylev Y., Lassas M., Uhlmann G.: Cloaking a sensor via transformation optics. Phys. Rev. E 83, 016603 (2011) · Zbl 1257.35156 · doi:10.1103/PhysRevE.83.016603
[15] Greenleaf A., Kurylev Y., Lassas M., Uhlmann G.: Approximate quantum and acoustic cloaking. J. Spectral Theory 1, 27–80 (2011) · Zbl 1257.35156 · doi:10.4171/JST/2
[16] Greenleaf A., Kurylev Y., Lassas M., Uhlmann G.: Cloaking devices, electromagnetic wormholes, and transformation optics. SIAM Rev. 51, 3–33 (2009) · Zbl 1158.78004 · doi:10.1137/080716827
[17] Greenleaf A., Lassas M., Uhlmann G.: On nonuniqueness for Calderon’s inverse problem. Math. Res. Lett. 10, 685–693 (2003) · Zbl 1054.35127 · doi:10.4310/MRL.2003.v10.n5.a11
[18] Guevara Vasquez F., Milton G.W., Onofrei D.: Active exterior cloaking for the 2D Laplace and Helmholtz Equations. Phys. Rev. Lett. 103, 073901 (2009) · Zbl 1254.78031 · doi:10.1103/PhysRevLett.103.073901
[19] Guevara Vasquez F., Milton G.W., Onofrei D.: Broadband exterior cloaking. Optics Express 17, 14800–14805 (2009) · doi:10.1364/OE.17.014800
[20] Kohn R.V., Onofrei D., Vogelius M.S., Weinstein M.I.: Cloaking via change of variables for the Helmholtz equation. Comm. Pure Appl. Math. 63, 973–1016 (2010) · Zbl 1194.35505
[21] Kohn, R.V., Shen, H., Vogelius, M.S., Weinstein, M.I.: Cloaking via change of variables in electric impedance tomography, Inverse Problems, 24, article 015016 (2008) · Zbl 1153.35406
[22] Lassas M., Zhou T.: Two dimensional invisibility cloaking for Helmholtz equation and non-local boundary conditions. Math. Res. Lett. 18, 473–488 (2011) · Zbl 1241.35045 · doi:10.4310/MRL.2011.v18.n3.a8
[23] Leonhardt U.: Optical conforming mapping. Science 312, 1777–1780 (2006) · Zbl 1226.78001 · doi:10.1126/science.1126493
[24] Liu H.: Virtual reshaping and invisibility in obstacle scattering. Inverse Problems 25, 044006 (2009) · Zbl 1169.35392 · doi:10.1088/0266-5611/25/4/045006
[25] Milton G., Nicorovici N.A.: On the cloaking effects associated with anomalous localized resonance. Proc. R. Soc. A 462, 3027–3059 (2006) · Zbl 1149.00310 · doi:10.1098/rspa.2006.1715
[26] Milton G., Nicorovici N.A., McPhedran R.C., Podolskiy V.A.: A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance. Proc. R. Soc. A 461, 3999–4034 (2005) · Zbl 1255.78002 · doi:10.1098/rspa.2005.1570
[27] Nguyen H.M.: Cloaking via change of variables for the Helmholtz equation in the whole space. Comm. Pure Appl. Math. 63, 1505–1524 (2010) · Zbl 1206.35259 · doi:10.1002/cpa.20333
[28] Pendry J.B., Schurig D., Smith D.R.: Controlling electromagnetic fields. Science 312, 1780–1782 (2006) · Zbl 1226.78003 · doi:10.1126/science.1125907
[29] Taylor, M.E.: Partial Differential Equations II. Qualitative Studies of Linear Equations. Appl. Math. Sci., Vol. 116, New York: Springer-Verlag, 1996 · Zbl 0869.35003
[30] Tretyakov S., Alitalo P., Luukkonen O., Simovski C.: Broadband electromagnetic cloaking of long cylindrical objects. Phys. Rev. Lett. 103, 103905 (2009) · doi:10.1103/PhysRevLett.103.103905
[31] Urzhumov Y.A., Kundtz N.B., Smith D.R., Pendry J.B.: Cross-section comparisons of cloaks designed by transformation optical and optical conformal mapping approaches. J. Opt. 13, 024002 (2011) · doi:10.1088/2040-8978/13/2/024002
[32] Watson, G.N.: Theory of Bessel Functions, 2nd edition, Cambridge: Cambridge University Press, 1944 · Zbl 0063.08184
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.