×

The dynamics of nonholonomic systems consisting of a spherical shell with a moving rigid body inside. (English) Zbl 1308.70003

Summary: In this paper we investigate two systems consisting of a spherical shell rolling without slipping on a plane and a moving rigid body fixed inside the shell by means of two different mechanisms. In the former case the rigid body is attached to the center of the ball on a spherical hinge. We show an isomorphism between the equations of motion for the inner body with those for the ball moving on a smooth plane. In the latter case the rigid body is fixed by means of a nonholonomic hinge. Equations of motion for this system have been obtained and new integrable cases found. A special feature of the set of tensor invariants of this system is that it leads to the Euler-Jacobi-Lie theorem, which is a new integration mechanism in nonholonomic mechanics. We also consider the problem of free motion of a bundle of two bodies connected by means of a nonholonomic hinge. For this system, integrable cases and various tensor invariants are found.

MSC:

70E18 Motion of a rigid body in contact with a solid surface
37J60 Nonholonomic dynamical systems
37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
Full Text: DOI

References:

[1] Borisov, A. V. and Mamaev, I. S., The Rolling of a Rigid Body on a Plane and Sphere: Hierarchy of Dynamics, Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 177–200. · Zbl 1058.70009 · doi:10.1070/RD2002v007n02ABEH000204
[2] Borisov, A. V. and Mamaev, I. S., The Dynamics of the Chaplygin Ball with a Fluid-Filled Cavity, Regul. Chaotic Dyn., 2013, vol. 18, no. 5, pp. 490–496; see also: Rus. J. Nonlin. Dyn., 2012, vol. 8, no. 1, pp. 103–111 (Russian). · Zbl 1286.70008 · doi:10.1134/S156035471305002X
[3] Borisov, A. V., Mamaev, I. S., and Kilin, A.A., Rolling of a ball on a Surface: New Integrals and Hierarchy of Dynamics, Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 201–220. · Zbl 1058.70010 · doi:10.1070/RD2002v007n02ABEH000205
[4] Borisov, A.V. and Mamaev, I. S., Conservation Laws, Hierarchy of Dynamics and Explicit Integration of Nonholonomic Systems, Regul. Chaotic Dyn., 2008, vol. 13, no. 5, pp. 443–490; see also: Rus. J. Nonlin. Dyn., 2008, vol. 4, no. 3, pp. 223–280 (Russian). · Zbl 1229.70038 · doi:10.1134/S1560354708050079
[5] Borisov, A. V., Mamaev, I. S., and Bizyaev, I. A., The Hierarchy of Dynamics of a Rigid Body Rolling without Slipping and Spinning on a Plane and a Sphere, Regul. Chaotic Dyn., 2013, vol. 18, no. 3, pp. 277–328. · Zbl 1367.70007 · doi:10.1134/S1560354713030064
[6] Borisov, A. V., Kilin, A.A., and Mamaev, I. S., Hamiltonicity and Integrability of the Suslov Problem, Regul. Chaotic Dyn., 2011, vol. 16, nos. 1–2, pp. 104–116. · Zbl 1277.70008 · doi:10.1134/S1560354711010035
[7] Borisov, A. V. and Mamaev, I. S., Two Non-Holonomic Integrable Problems Tracing Back to Chaplygin, Regul. Chaotic Dyn., 2012, vol. 17, no. 2, pp. 191–198. · Zbl 1252.76056 · doi:10.1134/S1560354712020074
[8] Bizyaev, I. A. and Tsiganov, A.V., On the Routh Sphere, Rus. J. Nonlin. Dyn., 2012, vol. 8, no. 3, pp. 569–583 (Russian). · Zbl 1311.70015
[9] Shen, J., Schneider, D.A., and Bloch, A.M., Controllability and Motion Planning of a Multibody Chaplygin’s Sphere and Chaplygin’s Top, Internat. J. Robust Nonlinear Control, 2008, vol. 18, no. 9, pp. 905–945. · Zbl 1284.93044 · doi:10.1002/rnc.1259
[10] Borisov, A. V., Kilin, A.A., and Mamaev, I. S., How To Control Chaplygin’s Sphere Using Rotors, Regul. Chaotic Dyn., 2012, vol. 17, nos. 3–4, pp. 258–272; see also: Rus. J. Nonlin. Dyn., 2012, vol. 8, no. 2, pp. 289–307 (Russian). · Zbl 1264.37016 · doi:10.1134/S1560354712030045
[11] Borisov, A. V., Kilin, A.A., and Mamaev, I. S., How To Control the Chaplygin Ball Using Rotors: 2, Regul. Chaotic Dyn., 2013, vol. 18, nos. 1–2, pp. 144–158; see also: Rus. J. Nonlin. Dyn., 2013, vol. 9, no. 1, pp. 59–76 (Russian). · Zbl 1303.37021 · doi:10.1134/S1560354713010103
[12] Svinin, M., Morinaga, A., and Yamamoto, M., On the Dynamic Model and Motion Planning for a Class of Spherical Rolling Robots, in Proc. of the IEEE Internat. Conf. on Robotics and Automation (ICRA, 14–18 May, 2012), pp. 3226–3231.
[13] Zenkov, D.V. and Bloch, A.M., Invariant Measures of Nonholonomic Flows with Internal Degrees of Freedom, Nonlinearity, 2003, vol. 16, no. 5, pp. 1793–1807. · Zbl 1116.37315 · doi:10.1088/0951-7715/16/5/313
[14] Bloch, A. M., Krishnaprasad, P. S., Marsden, J.E., and Murray, R. M., Nonholonomic Mechanical Systems with Symmetry, Arch. Rational Mech. Anal., 1996, vol. 136, no. 1, pp. 21–99. · Zbl 0886.70014 · doi:10.1007/BF02199365
[15] Fernandez, O.E., Mestdag, T., and Bloch, A. M., A Generalization of Chaplygin’s Reducibility Theorem, Regul. Chaotic Dyn., 2009, vol. 14, no. 6, pp. 635–655. · Zbl 1229.37087 · doi:10.1134/S1560354709060033
[16] Ohsawa, T., Fernandez, O. E., Bloch, A.M., and Zenkov, D.V., Nonholonomic Hamilton – Jacobi Theory via Chaplygin Hamiltonization, J. Geom. Phys., 2011, vol. 61, no. 8, pp. 1263–1291. · Zbl 1339.70035 · doi:10.1016/j.geomphys.2011.02.015
[17] Borisov, A. V., Mamaev, I. S., and Treschev, D.V., Rolling of a Rigid Body without Slipping and Spinning: Kinematics and Dynamics, Rus. J. Nonlin. Dyn., 2012, vol. 8, no. 4, pp. 783–797 (Russian). · Zbl 1367.70006
[18] Chaplygin, S.A., On Some Generalization of the Area Theorem with Applications to the Problem of Rolling Balls, in Collected Works: Vol. 1, Moscow: Gostekhizdat, 1948, pp. 26–56 (Russian).
[19] Bolotin, S. V. and Popova, T. V., On the Motion of a Mechanical System Inside a Rolling Ball, Regul. Chaotic Dyn., 2013, vol. 18, nos. 1–2, pp. 159–165. · Zbl 1303.37020 · doi:10.1134/S1560354713010115
[20] Pivovarova, E.N. and Ivanova, T. B., Stability Analysis of Periodic Solutions in the Problem of the Rolling of a Ball with a Pendulum, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2012, no. 4, pp. 146–155 (Russian). · Zbl 1299.70004
[21] Vagner, V.V., A Geometric Interpretation of Nonholonomic Dynamical Systems, Tr. semin. po vectorn. i tenzorn. anal., 1941, no. 5, pp. 301–327 (Russian).
[22] Kharlamov, A.P. and Kharlamov, M.P., A Nonholonomic Hinge, Mekh. Tverd. Tela, 1995, vol. 27, no. 1, pp. 1–7 (Russian).
[23] Halme, A., Schonberg, T., and Wang, Y., Motion Control of a Spherical Mobile Robot, in Proc. of the 4th IEEE Internat. Workshop on Advanced Motion Control (Mie, Japan, 1996): Vol. 1, pp. 259–264.
[24] Kozlov, V.V., The Euler – Jacobi – Lie Integrability Theorem, Regul. Chaotic Dyn., 2013, vol. 18, no. 4, pp. 329–343. · Zbl 1283.34035 · doi:10.1134/S1560354713040011
[25] Kozlov, V.V., Notes on Integrable Systems, Rus. J. Nonlin. Dyn., 2013, vol. 9, no. 3, pp. 459–478 (Russian).
[26] Suslov, G. K., Theoretical Mechanics, Moscow: Gostekhizdat, 1946 (Russian).
[27] Borisov, A.V. and Mamaev, I. S., Dynamics of a Rigid Body: Hamiltonian Methods, Integrability, Chaos, 2nd ed., Moscow: R&C Dynamics, ICS, 2005 (Russian). · Zbl 1114.70001
[28] Burov, A.A., On Partial Integrals of the Equations ofMotion of a Rigid Body on a Frictionless Horizontal Plane, in Research Problems of Stability and Stabilisation of Motion, V. V. Rumyantsev, V. S. Sergeev, S.Ya. Stepanov, A. S. Sumbatov (Eds.), Moscow: Computing Centre of the USSR Acad. Sci., 1985, pp. 118–121.
[29] Fuller, F. B., The Writhing Number of a Space Curve, Proc. Natl. Acad. Sci. USA, 1971, vol. 68, pp. 815–819. · Zbl 0212.26301 · doi:10.1073/pnas.68.4.815
[30] Tsiganov, A.V., On Natural Poisson Bivectors on the Sphere, J. Phys. A, 2011, vol. 44, no. 10, 105203, 21 pp. · Zbl 1380.70043
[31] Patera, J., Sharp, R.T., Winternitz, P., and Zassenhaus, H., Invariants of Real Low Dimension Lie Algebras, J. Math. Phys., 1976, vol. 17, no. 6, pp. 986–994. · Zbl 0357.17004 · doi:10.1063/1.522992
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.