×

The multiplicative structure on Hochschild cohomology of a complete intersection. (English) Zbl 1308.13022

Let \(K\) be a commutative (base) ring, let \(A\) be a commutative \(K\)-algebra, and let \(A^{\mathrm{ev}}\) be the enveloping algebra of \(A\) (over \(K\)). Consider the map \(s : \mathrm{Der}_K(A,A) = \mathrm{Ext}^1_{A^{\mathrm{ev}}} (A,A) \to \mathrm{Ext}^{2}_{A^{\mathrm{ev}}}(A,A)\) that sends a derivation \(D\) to the class \([D \circ D]\) of its square under the Yoneda product. In this paper, a more detailed description of the map \(s\) is given: If \(A\) is written \(A = P/I\), where \(I\) is an ideal in a polynomial ring \(P\) with coefficients in \(K\), then it is shown that \(s\) factors through \(\mathrm{Hom}_A(I/I^2,A)\). The first map \(q : \mathrm{Der}_K(A,A) \to \mathrm{Hom}_A(I/I^2,A)\) in this factorization is induced by the Hessian map. If \(A\) is projective as a \(K\)-module, then \(\mathrm{Ext}^{*}_{A^{\mathrm{ev}}}(A,A)\) is isomorphic to the Hochschild cohomology ring \(\mathrm{HH}^*(A/K,A)\), so in this case the result gives information about the squaring operation \(s : \mathrm{HH}^1(A/K,A) \to \mathrm{HH}^2(A/K,A)\).
In the case where \(A\) is a so-called homological complete intersection algebra, it is proved that \(\mathrm{Ext}^{*}_{A^{\mathrm{ev}}}(A,A)\) can be obtained as the cohomology algebra of a certain DG (Clifford) algebra \((\mathrm{Cliff}(q),\partial)\), whose differential can be described quite explicitly. Again, if \(A\) is projective as a \(K\)-module, then this result gives information about (all) the products in Hochschild cohomology ring \(\mathrm{HH}^*(A/K,A)\).

MSC:

13D03 (Co)homology of commutative rings and algebras (e.g., Hochschild, André-Quillen, cyclic, dihedral, etc.)
16E40 (Co)homology of rings and associative algebras (e.g., Hochschild, cyclic, dihedral, etc.)
13C40 Linkage, complete intersections and determinantal ideals
18G10 Resolutions; derived functors (category-theoretic aspects)

References:

[1] André, M., Homologie des algèbres commutatives, Grundlehren Math. Wiss., Band 206 (1974), Springer-Verlag: Springer-Verlag Berlin, New York, xv+341 pp · Zbl 0284.18009
[2] Avramov, L. L., Local algebra and rational homotopy, (Algebraic Homotopy and Local Algebra. Algebraic Homotopy and Local Algebra, Luminy, 1982. Algebraic Homotopy and Local Algebra. Algebraic Homotopy and Local Algebra, Luminy, 1982, Astérisque, vol. 113-114 (1984), Soc. Math. France: Soc. Math. France Paris), 15-43 · Zbl 0552.13003
[3] Avramov, L. L., Infinite free resolutions, (Six Lectures on Commutative Algebra. Six Lectures on Commutative Algebra, Bellaterra, 1996. Six Lectures on Commutative Algebra. Six Lectures on Commutative Algebra, Bellaterra, 1996, Prog. Math., vol. 166 (1998), Birkhäuser: Birkhäuser Basel), 1-118 · Zbl 0934.13008
[4] Avramov, L. L.; Bonacho Dos Anjos Henriques, I. B.; Şega, L. M., Quasi-complete intersection homomorphisms (2010), preprint, 20 pp. · Zbl 1310.13020
[5] Avramov, L. L.; Vigué-Poirrier, M., Hochschild homology criteria for smoothness, Int. Math. Res. Not., 1, 17-25 (1992) · Zbl 0755.13006
[6] Bergeron, N.; Wolfgang, H. L., The decomposition of Hochschild cohomology and Gerstenhaber operations, J. Pure Appl. Algebra, 104, 3, 243-265 (1995) · Zbl 0851.16004
[7] Blanco, A.; Majadas, J.; Rodicio, A. G., On the acyclicity of the Tate complex, J. Pure Appl. Algebra, 131, 2, 125-132 (1998) · Zbl 0953.13006
[8] Bonacho Dos Anjos Henriques, I.; Şega, L. M., Free resolutions over short Gorenstein local rings, Math. Z., 267, 3-4, 645-663 (2011) · Zbl 1213.13031
[9] Brewer, J. W.; Montgomery, P. R., The finiteness of I when \(R [X] / I\) is R-projective, Proc. Am. Math. Soc., 41, 407-414 (1973) · Zbl 0276.13011
[10] Brüderle, S.; Kunz, E., Divided powers and Hochschild homology of complete intersections, Math. Ann., 299, 1, 57-76 (1994), with an appendix by Reinhold Hübl · Zbl 0793.13006
[11] Buchweitz, R.-O.; Flenner, H., Global Hochschild (co-)homology of singular spaces, Adv. Math., 217, 1, 205-242 (2008) · Zbl 1140.14015
[12] Hochschild and cyclic homology of hypersurfaces, Adv. Math., 95, 1, 18-60 (1992) · Zbl 0771.13007
[13] Calaque, D.; Van den Bergh, M., Hochschild cohomology and Atiyah classes, Adv. Math., 224, 5, 1839-1889 (2010) · Zbl 1197.14017
[14] Cartan, H., Algèbre d’Eilenberg-Mac Lane et Homotopie, Sém. Henri Cartan, 7 (1954-1955), available in electronic form through NumDam
[15] Cartan, H.; Eilenberg, S., Homological Algebra (1956), Princeton University Press · Zbl 0075.24305
[16] Chapman, G. R., The cohomology ring of a finite abelian group, Proc. Lond. Math. Soc., 45, 3, 564-576 (1982) · Zbl 0565.20032
[17] Cibils, C.; Solotar, A., Hochschild cohomology algebra of abelian groups, Arch. Math., 68, 1, 17-21 (1997) · Zbl 0872.16004
[18] Cuntz, J.; Quillen, D., Algebra extensions and nonsingularity, J. Am. Math. Soc., 8, 2, 251-289 (1995) · Zbl 0838.19001
[19] Dumitrescu, T.; Ionescu, C., Some examples of two-dimensional regular rings (2013), preprint, 6 pp.
[20] Gerstenhaber, M., The cohomology structure of an associative ring, Ann. Math., 78, 267-288 (1963) · Zbl 0131.27302
[21] Grothendieck, A., Eléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I, Publ. Math. IHÉS, 20 (1964), 259 pp · Zbl 0136.15901
[22] Guccione, J. A.; Guccione, J. J., Hochschild homology of complete intersections, J. Pure Appl. Algebra, 74, 2, 159-176 (1991) · Zbl 0746.13004
[23] Holm, T., Hochschild cohomology rings of algebras \(k [X] /(f)\), Beiträge Algebra Geom., 41, 1, 291-301 (2000) · Zbl 0961.13006
[24] Hübschmann, J., Cohomology of finitely generated abelian groups, Enseign. Math., 37, 1-2, 61-71 (1991) · Zbl 0743.20050
[25] Iyengar, S., Acyclicity of Tate constructions, J. Pure Appl. Algebra, 163, 3, 289-300 (2001) · Zbl 1066.13015
[26] Majadas, J.; Rodicio, A. G., The Hochschild (co-)homology of hypersurfaces, Commun. Algebra, 20, 2, 349-386 (1992) · Zbl 0765.14025
[27] Northcott, D. G., Finite Free Resolutions, Cambridge Tracts Math., vol. 71 (1976), Cambridge University Press: Cambridge University Press Cambridge, New York, Melbourne, xii+271 pp · Zbl 0328.13010
[28] Ohm, J.; Rush, D. E., The finiteness of I when \(R [X] / I\) is flat, Trans. Am. Math. Soc., 171, 377-408 (1972) · Zbl 0256.13008
[29] Quillen, D., On the (co-)homology of commutative rings, (Applications of Categorical Algebra. Applications of Categorical Algebra, New York, 1968. Applications of Categorical Algebra. Applications of Categorical Algebra, New York, 1968, Proc. Sympos. Pure Math., vol. XVII (1970), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 65-87 · Zbl 0234.18010
[30] Roberts, C. D., The cohomology ring of a finite abelian group (2013), University of Waterloo, 141 pp
[31] Roberts, L. G., Some examples of smooth and regular rings, Can. Math. Bull., 23, 3, 255-259 (1980) · Zbl 0439.13005
[32] Sanada, K., On the Hochschild cohomology of crossed products, Commun. Algebra, 21, 8, 2727-2748 (1993) · Zbl 0783.16007
[33] Siegel, S. F.; Witherspoon, S. J., The Hochschild cohomology ring of a group algebra, Proc. Lond. Math. Soc., 79, 1, 131-157 (1999) · Zbl 1044.16005
[34] Sjödin, G., Hopf algebras and derivations, J. Algebra, 64, 1, 218-229 (1980) · Zbl 0429.16008
[35] Suárez-Alvarez, M., The Hilton-Heckmann argument for the anti-commutativity of cup products, Proc. Am. Math. Soc., 132, 8, 2241-2246 (2004) · Zbl 1045.18002
[36] Suárez-Alvarez, M., Applications of the change-of-rings spectral sequence to the computation of Hochschild cohomology (2007), preprint, 27 pp.
[37] Tate, J., Homology of Noetherian rings and local rings, Ill. J. Math., 1, 14-27 (1957) · Zbl 0079.05501
[38] Townsley Kulich, L. G., Investigations of the integral cohomology ring of a finite group (1988), Northwestern University, 83 pp
[39] Wolffhardt, K., The Hochschild homology of complete intersections, Trans. Am. Math. Soc., 171, 51-66 (1972) · Zbl 0269.14018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.