×

Hochschild cohomology and Atiyah classes. (English) Zbl 1197.14017

In this article the work is done over a ringed site over a field \(k\) of characteristic zero. However, this review will state the results for a commutatively ringed space \((X,\mathcal O_X)\). A Lie algebroid on \(X\) is then a sheaf of Lie algebras \(\mathcal L\) which is an \(\mathcal O_X\)-module and is equipped with an action \(\mathcal L\times\mathcal O_X\rightarrow\mathcal O_X\) with properties mimicking those of the tangent bundle. Throughout this review \(\mathcal L\) denotes a locally free Lie algebroid over \((X,\mathcal O_X)\) of constant rank \(d\).
Lie algebroids are a means of algebraizing differential geometry. E.g., they allow us to treat the algebraic/complex analytic and \(C^\infty\)-case in a uniform way. Examples (of Lie algebroids) are the sheaf of vector fields on a \(C^\infty\)-manifold, the sheaf of holomorphic vector fields on a complex analytic variety, the sheaf of algebriaic vector fields on a smooth algebraic variety, \(\mathcal O_X\otimes\mathfrak g\) where \(\mathfrak g\) is the Lie algebra of an algebraic group acting on a smooth algebraic variety \(X\). The authors setting also applies to some extent to the singular case as well.
The Atiyah class \(A(\mathcal L)\) of \(\mathcal L\) is the element of \(\text{Ext}^1_{\mathcal O_X}(\mathcal L, \mathcal L^\ast\otimes_{\mathcal O_X}\mathcal L)\) which is the obstruction against the existence of an \(\mathcal L\)-connection on \(\mathcal L\). The \(i\)th \((i>0)\) scalar Atiyah class \(a_i(\mathcal L)\) is defined as \(a_i(\mathcal L)=\text{AltTr}(A(\mathcal L)^i)\in H^i(X,(\bigwedge^i\mathcal L)^\ast)\). In the \(C^\infty\) or affine case \(a_i(\mathcal L)=0\) as the cohomology groups \(H^i(X,(\bigwedge^i\mathcal L^\ast)\) vanish. If \(X\) is a Kähler manifold and \(\mathcal T_X\) is the sheaf of holomorphic vector fields then \(a_i(\mathcal T_X)\) coincides with the \(i\)th Chern class of \(\mathcal T_X\).
The Todd class of \(\mathcal L\) is defined as \(\text{td}(\mathcal L)=\det(q(A(\mathcal L)))\) where \(q(x)=x/(1-e^{-x})\). Then \(\text{td}(\mathcal L)\) can be expanded formally in terms of \(a_i(\mathcal L).\)
The sheaf of \(\mathcal L\)-poly-vector fields on \(X\) is defined as \(T^{\mathcal L}_{\text{poly}}(\mathcal O_X)=\bigoplus_i\bigwedge^i\mathcal L\). Then \(T^{\mathcal L}_{\text{poly}}(\mathcal O_X)\) is a sheaf of Gerstenhaber algebras on \(X\). In the case that \(X\) is a \(C^\infty\)-manifold Kontsevich introduced the sheaf of poly-differential operators on \(X\), and it is possible to construct a Lie algebroid generalization \(D^\mathcal L_{\text{poly}}(\mathcal O_X)\) of this concept as well. Like \(T^\mathcal L_{\text{poly}}(\mathcal O_X)\), \(D^\mathcal L_{\text{poly}}(\mathcal O_X)\) is equipped with a Lie bracket and an associative cupproduct but these operations satisfy the Gerstenhaber axioms only up to globally defined homotopies.
The Hochschild-Kostant-Rosenberg map is a quasi-isomorphism between \(T^{\mathcal L}_{\text{poly}}(\mathcal O_X)\) and \(D^{\mathcal L}_{\text{poly}}(\mathcal O_X)\). This article is concerned with the failure of the HKR-map to be compatible with the Lie brackets and cupproducts on \(T^{\mathcal L}_{\text{poly}}(\mathcal O_X)\) and \(D^{\mathcal L}_{\text{poly}}(\mathcal O_X)\).
Let \(\text{D}(X)\) be the derived category of sheaves of \(k\)-vector spaces. This category is equipped with a symmetric monoidal structure given by the derived tensor product.
The articles first main result is that the map in \(\text{D}(X)\), \[ T^{\mathcal L}_{\text{poly}}(\mathcal O_X)\overset{\text{HKR}\circ(\text{td}(\mathcal L)^{1/2}\wedge-)}\longrightarrow D^{\mathcal L}_{\text{poly}}(\mathcal O_X) \] is an isomorphisms of Gerstenhaber algebras in \(\text{D}(X)\). Applying the hypercohomology functor \(\mathbb H^\ast(X,-)\) the authors immediately get also that the map \[ \bigoplus_{i,j}H^j(X,\bigwedge^i\mathcal L)\overset{\text{HKR}\circ(\text{td}(\mathcal L)^{1/2}\wedge-)}\longrightarrow\mathbb{H}^\ast(X,D^{\mathcal L}_{\text{poly}}(\mathcal O_X)) \] is an isomorphism of Gerstenhaber algebras.
Restricting to the setting where \(X\) is a smooth algebraic variety and \(\mathcal L=\mathcal T_X\), the above right hand side can be viewed as the Hochschild cohomology \(\text{HH}^\ast\) of \(X\). Then the above result can be rephrased as saying that there is an isomorphism of Gerstenhaber algebras \[ \bigoplus_{i,j}H^j(X,\bigwedge^i\mathcal L)\overset{\text{HKR}\circ(\text{td}(\mathcal T_X)^{1/2}\wedge-)}\longrightarrow \text{HH}^\ast(X). \]
Looking only at the Lie algebra structure the authors actually prove a stronger result: Let \(\text{HoLieAlg}(X)\) be the category of sheaves of DG-Lie algebras on \(X\) with quasi-isomorphisms inverted. Then the isomorphism between \(T^{\mathcal L}_{\text{poly}}(\mathcal O_X)\) and \(D^{\mathcal L}_{\text{poly}}(\mathcal O_X)\) is obtained from an isomorphism in \(\text{HoLieAlg}(X)\).
The article is very well written, though not self contained. However, with the more advanced basic knowledge of the field, it is easy to understand the important results, their applications and proofs.

MSC:

14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
14D23 Stacks and moduli problems
14F43 Other algebro-geometric (co)homologies (e.g., intersection, equivariant, Lawson, Deligne (co)homologies)
18G55 Nonabelian homotopical algebra (MSC2010)
53D55 Deformation quantization, star products

References:

[1] Arnal, D.; Manchon, D.; Masmoudi, M., Choix des signes pour la formalité de M. Kontsevich, Pacific J. Math., 203, 1, 23-66 (2002) · Zbl 1055.53066
[2] Artin, M.; Grothendieck, A.; Verdier, J. L., Theorie des topos et cohomologie étale des schémas, SGA4, Tome 1, Lecture Notes in Math., vol. 269 (1972), Springer-Verlag · Zbl 0234.00007
[3] Bezrukavnikov, R.; Kaledin, D., Fedosov quantization in algebraic context, Mosc. Math. J., 4, 3, 559-592 (2004), 782 · Zbl 1074.14014
[4] Calaque, D., Formality for Lie algebroids, Comm. Math. Phys., 257, 3, 563-578 (2005) · Zbl 1079.53138
[5] Calaque, D.; Halbout, G., Weak quantization of Poisson structures · Zbl 1223.53064
[6] Calaque, D.; Rossi, C., Lectures on Duflo isomorphisms in Lie algebras and complex geometry · Zbl 1220.53006
[7] Calaque, D.; Van den Bergh, M., Global formality at the \(G_\infty \)-level · Zbl 1205.14024
[8] Calaque, D.; Dolgushev, V.; Halbout, G., Formality theorems for Hochschild chains in the Lie algebroid setting, J. Reine Angew. Math., 612, 81-127 (2007) · Zbl 1141.53084
[9] Caldararu, A., The Mukai pairing. II. The Hochschild-Kostant-Rosenberg isomorphism, Adv. Math., 194, 1, 34-66 (2005) · Zbl 1098.14011
[10] Cattaneo, A. S., On the integration of Poisson manifolds, Lie algebroids, and coisotropic submanifolds, Lett. Math. Phys., 67, 1, 33-48 (2004) · Zbl 1059.53064
[11] Cattaneo, A. S.; Felder, G., Coisotropic submanifolds in Poisson geometry and branes in the Poisson sigma model, Lett. Math. Phys., 69, 157-175 (2004) · Zbl 1065.53063
[12] Cattaneo, A. S.; Felder, G., Relative formality theorem and quantisation of coisotropic submanifolds, Adv. Math., 208, 2, 521-548 (2007) · Zbl 1106.53060
[13] Cattaneo, A. S.; Felder, G.; Tomassini, L., From local to global deformation quantization of Poisson manifolds, Duke Math. J., 115, 2, 329-352 (2002) · Zbl 1037.53063
[14] Dolgushev, V., Covariant and equivariant formality theorems, Adv. Math., 191, 1, 147-177 (2005) · Zbl 1116.53065
[16] Dolgushev, V.; Tamarkin, D.; Tsygan, B., The homotopy Gerstenhaber algebra of Hochschild cochains of a regular algebra is formal, J. Noncommut. Geom., 1, 1, 1-25 (2007) · Zbl 1144.18007
[17] Gerstenhaber, M.; Voronov, A. A., Higher-order operations on the Hochschild complex, Funktsional. Anal. i Prilozhen., 29, 1, 1-6 (1995), 96 · Zbl 0849.16010
[18] Halbout, G., Globalization of Tamarkin’s formality theorem, Lett. Math. Phys., 71, 1, 39-48 (2005) · Zbl 1081.53079
[19] Hartshorne, R., Residues and Duality, Lecture Notes in Math., vol. 20 (1966), Springer-Verlag: Springer-Verlag Berlin · Zbl 0212.26101
[20] Kapranov, M., Rozansky-Witten invariants via Atiyah classes, Compos. Math., 115, 1, 71-113 (1999) · Zbl 0993.53026
[21] Kontsevich, M., Deformation quantization of algebraic varieties, EuroConférence Moshé Flato 2000, Part III (Dijon). EuroConférence Moshé Flato 2000, Part III (Dijon), Lett. Math. Phys., 56, 3, 271-294 (2001) · Zbl 1081.14500
[22] Kontsevich, M., Deformation quantization of Poisson manifolds, Lett. Math. Phys., 66, 3, 157-216 (2003) · Zbl 1058.53065
[23] Lowen, W.; Van den Bergh, M., Hochschild cohomology of abelian categories and ringed spaces, Adv. Math., 198, 1, 172-221 (2005) · Zbl 1095.13013
[24] Manchon, D.; Torossian, C., Cohomologie tangente et cup-produit pour la quantification de Kontsevich, Ann. Math. Blaise Pascal, 10, 1, 75-106 (2003) · Zbl 1051.53072
[25] Markarian, N., The Atiyah class, Hochschild cohomology and the Riemann-Roch theorem · Zbl 1167.14005
[26] Mochizuki, T., On the morphism of Duflo-Kirillov type, J. Geom. Phys., 41, 1-2, 73-113 (2002) · Zbl 1134.53304
[27] Nest, R.; Tsygan, B., Deformations of symplectic Lie algebroids, deformations of holomorphic symplectic structures, and index theorems, Asian J. Math., 5, 4, 599-635 (2001) · Zbl 1023.53060
[28] Ramadoss, A. C., The relative Riemann-Roch theorem from Hochschild homology · Zbl 1158.19002
[29] Shoikhet, B., Koszul duality in deformation quantization and Tamarkin’s approach to Kontsevich formality · Zbl 1208.18009
[30] Shoikhet, B., On the Duflo formula for \(L_\infty \)-algebras and Q-manifolds
[31] Shoikhet, B., Vanishing of the Kontsevich integrals of the wheels, EuroConférence Moshé Flato 2000, Part II (Dijon). EuroConférence Moshé Flato 2000, Part II (Dijon), Lett. Math. Phys., 56, 2, 141-149 (2001) · Zbl 1018.53043
[32] Swan, R. G., Hochschild cohomology of quasiprojective schemes, J. Pure Appl. Algebra, 110, 1, 57-80 (1996) · Zbl 0865.18010
[33] Tamarkin, D. E., Another proof of M. Kontsevich formality theorem · Zbl 0878.58002
[34] Tsygan, B., Formality conjecture for chains · Zbl 0962.18008
[35] Van den Bergh, M., The Kontsevich weight of a wheel with spokes pointing outward · Zbl 1191.14026
[36] Van den Bergh, M., On global deformation quantization in the algebraic case, J. Algebra, 315, 326-395 (2007) · Zbl 1133.14021
[37] Warner, F., Foundations of Differentiable Manifolds and Lie Groups (1971), Scott, Foresman and Company · Zbl 0241.58001
[38] Willwacher, T., A counterexample to the quantizability of modules, Lett. Math. Phys., 81, 3, 265-280 (2007) · Zbl 1138.53069
[39] Xu, P., Quantum groupoids, Comm. Math. Phys., 216, 3, 539-581 (2001) · Zbl 0986.17003
[41] Yekutieli, A., The continuous Hochschild cochain complex of a scheme, Canad. J. Math., 54, 6, 1319-1337 (2002) · Zbl 1047.16004
[42] Yekutieli, A., Deformation quantization in algebraic geometry, Adv. Math., 198, 1, 383-432 (2005) · Zbl 1085.53081
[43] Yekutieli, A., Continuous and twisted \(L_\infty\) morphisms, J. Pure Appl. Algebra, 207, 3, 575-606 (2006) · Zbl 1104.53085
[44] Yekutieli, A., Lecture notes: Twisted deformation quantization of algebraic varieties
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.