×

A hybrid type four-step method with vanished phase-lag and its first, second and third derivatives for each level for the numerical integration of the Schrödinger equation. (English) Zbl 1307.65106

Summary: In this paper, we study the effects of the vanishing of the phase-lag and its first, second and third derivatives on the effectiveness of a four-step hybrid type method of sixth algebraic order. As a result of the above described study, a hybrid type of three level four-step method of sixth algebraic order is obtained. We investigate the new produced method theoretically and computationally. The theoretical investigation of the new hybrid method consists of: 0.5 cm
-
the development of the new method.
-
the computation of the local truncation error.
-
the comparison of the local truncation error analysis with other known methods of the same form.
-
the stability analysis.
The computational investigation consists of the application of the new obtained hybrid method to the numerical solution of the resonance problem of the radial time independent Schrödinger equation.

MSC:

65L10 Numerical solution of boundary value problems involving ordinary differential equations
34B05 Linear boundary value problems for ordinary differential equations
34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations
65L70 Error bounds for numerical methods for ordinary differential equations
Full Text: DOI

References:

[1] L. Gr. Ixaru, M. Micu, Topics in Theoretical Physics (Central Institute of Physics, Bucharest, 1978)
[2] L.D. Landau, F.M. Lifshitz, Quantum Mechanics (Pergamon, New York, 1965) · Zbl 0178.57901
[3] I. Prigogine, S. Rice (eds), Advances in Chemical Physics, Vol. 93: New Methods in Computational Quantum Mechanics (Wiley, London, 1997) · Zbl 0448.65045
[4] G. Herzberg, Spectra of Diatomic Molecules (Van Nostrand, Toronto, 1950)
[5] T.E. Simos, J. Vigo-Aguiar, A modified phase-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation. J. Math. Chem. 30(1), 121-131 (2001) · Zbl 1003.65082 · doi:10.1023/A:1013185619370
[6] K. Tselios, T.E. Simos, Runge-Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics. J. Comput. Appl. Math. 175(1), 173-181 (2005) · Zbl 1063.65113 · doi:10.1016/j.cam.2004.06.012
[7] Z.A. Anastassi, T.E. Simos, An optimized Runge-Kutta method for the solution of orbital problems. J. Comput. Appl. Math. 175(1), 1-9 (2005) · Zbl 1063.65059 · doi:10.1016/j.cam.2004.06.004
[8] D.F. Papadopoulos, T.E. Simos, A new methodology for the construction of optimized Runge-Kutta-Nyström methods. Int. J. Mod. Phys. C 22(6), 623-634 (2011) · Zbl 1262.65080 · doi:10.1142/S012918311101649X
[9] Dimitris F. Papadopoulos, T.E. Simos, A modified Runge-Kutta-Nyström method by using phase lag properties for the numerical solution of orbital problems. Appl. Math. Inf. Sci. 7(2), 433-437 (2013) · doi:10.12785/amis/070202
[10] Th Monovasilis, Z. Kalogiratou, T.E. Simos, Exponentially fitted symplectic Runge-Kutta-Nyström methods. Appl. Math. Inf. Sci. 7(1), 81-85 (2013) · Zbl 1347.65123 · doi:10.12785/amis/070108
[11] A.A. Kosti, Z.A. Anastassi, T.E. Simos, An optimized explicit Runge-Kutta method with increased phase-lag order for the numerical solution of the Schrödinger equation and related problems. J. Math. Chem. 47(1), 315-330 (2010) · Zbl 1200.81052 · doi:10.1007/s10910-009-9571-z
[12] Z. Kalogiratou, T.E. Simos, Construction of trigonometrically and exponentially fitted Runge-Kutta-Nyström methods for the numerical solution of the Schrödinger equation and related problems a method of 8th algebraic order. J. Math. Chem. 31(2), 211-232 (2002) · Zbl 1002.65077 · doi:10.1023/A:1016231100377
[13] T.E. Simos, A fourth algebraic order exponentially-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation. IMA J. Numer. Anal. 21(4), 919-931 (2001) · Zbl 0990.65079 · doi:10.1093/imanum/21.4.919
[14] T.E. Simos, Exponentially-fitted Runge-Kutta-Nyström method for the numerical solution of initial-value problems with oscillating solutions. Appl. Math. Lett. 15(2), 217-225 (2002) · Zbl 1003.65081 · doi:10.1016/S0893-9659(01)00121-5
[15] Ch. Tsitouras, T.E. Simos, Optimized Runge-Kutta pairs for problems with oscillating solutions. J. Comput. Appl. Math. 147(2), 397-409 (2002) · Zbl 1013.65073 · doi:10.1016/S0377-0427(02)00475-2
[16] Z.A. Anastassi, T.E. Simos, Trigonometrically fitted Runge-Kutta methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 281-293 (2005) · Zbl 1070.81035 · doi:10.1007/s10910-004-1470-8
[17] Z.A. Anastassi, T.E. Simos, A family of exponentially-fitted Runge-Kutta methods with exponential order up to three for the numerical solution of the Schrödinger equation. J. Math. Chem. 41(1), 79-100 (2007) · Zbl 1125.81017 · doi:10.1007/s10910-006-9071-3
[18] J.D. Lambert, I.A. Watson, Symmetric multistep methods for periodic initial values problems. J. Inst. Math. Appl. 18, 189-202 (1976) · Zbl 0359.65060 · doi:10.1093/imamat/18.2.189
[19] G.D. Quinlan, S. Tremaine, Symmetric multistep methods for the numerical integration of planetary orbits. Astron. J. 100, 1694-1700 (1990) · doi:10.1086/115629
[20] C. Tsitouras, I.T. Famelis, T.E. Simos, On modified Runge-Kutta trees and methods. Comput. Math. Appl. 62(4), 2101-2111 (2011) · Zbl 1231.65118 · doi:10.1016/j.camwa.2011.06.058
[21] http://burtleburtle.net/bob/math/multistep.html · Zbl 1070.81044
[22] G. Avdelas, A. Konguetsof, T.E. Simos, A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation. Part 1. Development of the basic method. J. Math. Chem. 29(4), 281-291 (2001) · Zbl 1022.81008 · doi:10.1023/A:1010947219240
[23] M.M. Chawla, P.S. Rao, An explicit sixth-order method with phase-lag of order eight for \[y^{\prime \prime }=f(t, y)\] y″=f(t,y). J. Comput. Appl. Math. 17, 363-368 (1987) · Zbl 0614.65084
[24] M.M. Chawla, P.S. Rao, An Noumerov-typ method with minimal phase-lag for the integration of second order periodic initial-value problems II explicit method. J. Comput. Appl. Math. 15, 329-337 (1986) · Zbl 0598.65054 · doi:10.1016/0377-0427(86)90224-4
[25] T.E. Simos, P.S. Williams, A finite difference method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 79, 189-205 (1997) · Zbl 0877.65054 · doi:10.1016/S0377-0427(96)00156-2
[26] G. Avdelas, A. Konguetsof, T.E. Simos, A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation. Part 2. Development of the generator; optimization of the generator and numerical results. J. Math. Chem. 29(4), 293-305 (2001) · Zbl 1022.81009 · doi:10.1023/A:1010999203310
[27] T.E. Simos, J. Vigo-Aguiar, Symmetric eighth algebraic order methods with minimal phase-lag for the numerical solution of the Schrödinger equation. J. Math. Chem. 31(2), 135-144 (2002) · Zbl 1002.65078 · doi:10.1023/A:1016259830419
[28] A. Konguetsof, T.E. Simos, A generator of hybrid symmetric four-step methods for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 93-106 (2003) · Zbl 1027.65094 · doi:10.1016/S0377-0427(03)00469-2
[29] T.E. Simos, I.T. Famelis, C. Tsitouras, Zero dissipative, explicit numerov-type methods for second order IVPs with oscillating solutions. Numer. Algorithms 34(1), 27-40 (2003) · Zbl 1031.65080 · doi:10.1023/A:1026167824656
[30] D.P. Sakas, T.E. Simos, Multiderivative methods of eighth algrebraic order with minimal phase-lag for the numerical solution of the radial Schrödinger equation. J. Comput. Appl. Math. 175(1), 161-172 (2005) · Zbl 1063.65067 · doi:10.1016/j.cam.2004.06.013
[31] T.E. Simos, Optimizing a class of linear multi-step methods for the approximate solution of the radial Schrödinger equation and related problems with respect to phase-lag. Cent. Eur. J. Phys. 9(6), 1518-1535 (2011) · doi:10.2478/s11534-011-0074-8
[32] D.P. Sakas, T.E. Simos, A family of multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 317-331 (2005) · Zbl 1070.81045 · doi:10.1007/s10910-004-1472-6
[33] H. Van de Vyver, Phase-fitted and amplification-fitted two-step hybrid methods for \[y^{\prime \prime }=f(x, y)\] y″=f(x,y). J. Comput. Appl. Math. 209(1), 33-53 (2007) · Zbl 1141.65061
[34] Hans Van de Vyver, An explicit Numerov-type method for second-order differential equations with oscillating solutions. Comput. Math. Appl. 53, 1339-1348 (2007) · Zbl 1121.65086 · doi:10.1016/j.camwa.2006.06.012
[35] T.E. Simos, A new Numerov-type method for the numerical solution of the Schrödinger equation. J. Math. Chem. 46(3), 981-1007 (2009) · Zbl 1183.81060 · doi:10.1007/s10910-009-9553-1
[36] G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, A new symmetric eight-step predictor-corrector method for the numerical solution of the radial Schrödinger equation and related orbital problems. Int. J. Mod. Phys. C 22(2), 133-153 (2011) · Zbl 1236.65085 · doi:10.1142/S0129183111016154
[37] G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, A symmetric eight-step predictor-corrector method for the numerical solution of the radial Schrödinger equation and related IVPs with oscillating solutions. Comput. Phys. Commun. 182(8), 1626-1637 (2011) · Zbl 1262.65084 · doi:10.1016/j.cpc.2011.04.011
[38] T.E. Simos, Optimizing a hybrid two-step method for the numerical solution of the Schrödinger equation and related problems with respect to phase-lag. J. Appl. Math. Article ID 420387, Volume 2012 (2012). · Zbl 1247.65096
[39] T.E. Simos, A two-step method with vanished phase-lag and its first two derivatives for the numerical solution of the Schrödinger equation. J. Math. Chem. 49(10), 2486-2518 (2011) · Zbl 1304.65177 · doi:10.1007/s10910-011-9897-1
[40] I. Alolyan, T.E. Simos, A new four-step hybrid type method with vanished phase-lag and its first derivatives for each level for the approximate integration of the Schrödinger equation. J. Math. Chem. 51, 2542-2571 (2013) · Zbl 1314.65099 · doi:10.1007/s10910-013-0227-7
[41] I. Alolyan, T.E. Simos, A Runge-Kutta type four-step method with vanished phase-lag and its first and second derivatives for each level for the numerical integration of the Schrödinger equation. J. Math. Chem. 52, 917-947 (2014) · Zbl 1300.65050 · doi:10.1007/s10910-013-0301-1
[42] Z.A. Anastassi, T.E. Simos, A parametric symmetric linear four-step method for the efficient integration of the Schrödinger equation and related oscillatory problems. J. Comput. Appl. Math. 236(16), 3880-3889 (2012) · Zbl 1246.65105 · doi:10.1016/j.cam.2012.03.016
[43] G.A. Panopoulos, T.E. Simos, An optimized symmetric 8-step semi-embedded predictor-corrector method for IVPs with oscillating solutions. Appl. Math. Inf. Sci. 7(1), 73-80 (2013) · doi:10.12785/amis/070107
[44] G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, A new eight-step symmetric embedded predictor-corrector method (EPCM) for orbital problems and related IVPs with oscillatory solutions. Astron. J. 145(3) Article Number: 75 (2013). doi:10.1088/0004-6256/145/3/75
[45] T.E. Simos, New high order multiderivative explicit four-step methods with vanished phase-lag and its derivatives for the approximate solution of the Schrödinger equation. Construction and theoretical analysis. J. Math. Chem. 51(1), 194-226 (2013) · Zbl 1270.81083 · doi:10.1007/s10910-012-0074-y
[46] T.E. Simos, On the explicit four-step methods with vanished phase-lag and its first derivative. Appl. Math. Inf. Sci. 8(2), 447-458 (2014) · doi:10.12785/amis/080201
[47] G.A. Panopoulos, T.E. Simos, A new optimized symmetric embedded predictor-corrector method (EPCM) for initial-value problems with oscillatory solutions. Appl. Math. Inf. Sci. 8(2), 703-713 (2014) · doi:10.12785/amis/080229
[48] A. Konguetsof, A new two-step hybrid method for the numerical solution of the Schrödinger equation. J. Math. Chem. 47(2), 871-890 (2010) · Zbl 1200.81051 · doi:10.1007/s10910-009-9606-5
[49] K. Tselios, T.E. Simos, Symplectic methods for the numerical solution of the radial Shrödinger equation. J. Math. Chem. 34(1-2), 83-94 (2003) · Zbl 1029.65134 · doi:10.1023/A:1025140822233
[50] K. Tselios, T.E. Simos, Symplectic methods of fifth order for the numerical solution of the radial Shrodinger equation. J. Math. Chem. 35(1), 55-63 (2004) · Zbl 1044.81031 · doi:10.1023/B:JOMC.0000007812.39332.fa
[51] T. Monovasilis, T.E. Simos, New second-order exponentially and trigonometrically fitted symplectic integrators for the numerical solution of the time-independent Schrödinger equation. J. Math. Chem. 42(3), 535-545 (2007) · Zbl 1132.81344 · doi:10.1007/s10910-006-9129-2
[52] T. Monovasilis, Z. Kalogiratou, T.E. Simos, Exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 37(3), 263-270 (2005) · Zbl 1073.65071 · doi:10.1007/s10910-004-1468-2
[53] T. Monovasilis, Z. Kalogiratou, T.E. Simos, Trigonometrically fitted and exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 40(3), 257-267 (2006) · Zbl 1125.81021 · doi:10.1007/s10910-006-9167-9
[54] Z. Kalogiratou, T. Monovasilis, T.E. Simos, Symplectic integrators for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 83-92 (2003) · Zbl 1027.65171 · doi:10.1016/S0377-0427(03)00478-3
[55] T.E. Simos, Closed Newton-Cotes trigonometrically-fitted formulae of high-order for long-time integration of orbital problems. Appl. Math. Lett. 22(10), 1616-1621 (2009) · Zbl 1171.65449 · doi:10.1016/j.aml.2009.04.008
[56] Z. Kalogiratou, T.E. Simos, Newton-Cotes formulae for long-time integration. J. Comput. Appl. Math. 158(1), 75-82 (2003) · Zbl 1041.65104 · doi:10.1016/S0377-0427(03)00479-5
[57] T.E. Simos, High order closed Newton-Cotes trigonometrically-fitted formulae for the numerical solution of the Schrödinger equation. Appl. Math. Comput. 209(1), 137-151 (2009) · Zbl 1161.65091 · doi:10.1016/j.amc.2008.06.020
[58] T.E. Simos, Closed Newton-Cotes trigonometrically-fitted formulae for the solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 60(3), 787-801 (2008) · Zbl 1199.65411
[59] T.E. Simos, Closed Newton-Cotes trigonometrically-fitted formulae of high order for the numerical integration of the Schrödinger equation. J. Math. Chem. 44(2), 483-499 (2008) · Zbl 1217.65054 · doi:10.1007/s10910-007-9322-y
[60] T.E. Simos, High-order closed Newton-Cotes trigonometrically-fitted formulae for long-time integration of orbital problems. Comput. Phys. Commun. 178(3), 199-207 (2008) · Zbl 1196.65194 · doi:10.1016/j.cpc.2007.08.016
[61] T.E. Simos, Closed Newton-Cotes trigonometrically-fitted formulae for numerical integration of the Schrödinger equation. Comput. Lett. 3(1), 45-57 (2007) · doi:10.1163/157404007779994269
[62] T.E. Simos, Closed Newton-Cotes trigonometrically-fitted formulae for long-time integration of orbital problems. RevMexAA 42(2), 167-177 (2006)
[63] T.E. Simos, Closed Newton-Cotes trigonometrically-fitted formulae for long-time integration. Int. J. Mod. Phys. C 14(8), 1061-1074 (2003) · Zbl 1079.70502 · doi:10.1142/S0129183103005248
[64] T.E. Simos, New closed Newton-Cotes type formulae as multilayer symplectic integrators. J. Chem. Phys. 133(10) Article Number: 104108 (2010) · Zbl 1183.81060
[65] T.E. Simos, New stable closed Newton-Cotes trigonometrically fitted formulae for long-time integration. Abstr. Appl. Anal. Article Number: 182536 (2012). doi:10.1155/2012/182536 · Zbl 1242.65026
[66] T.E. Simos, High order closed Newton-Cotes exponentially and trigonometrically fitted formulae as multilayer symplectic integrators and their application to the radial Schrödinger equation. J. Math. Chem. 50(5), 1224-1261 (2012) · Zbl 1403.81016 · doi:10.1007/s10910-011-9965-6
[67] T.E. Simos, Accurately Closed Newton-Cotes trigonometrically-fitted formulae for the numerical solution of the Schrödinger equation. Int. J. Mod. Phys. C 24(3) (2013). doi:10.1142/S0129183113500149 · Zbl 1314.65099
[68] T.E. Simos, New open modified Newton-Cotes type formulae as multilayer symplectic integrators. Appl. Math. Model. 37(4), 1983-1991 (2013) · Zbl 1349.65095 · doi:10.1016/j.apm.2012.05.001
[69] G. Vanden Berghe, M. Van Daele, Exponentially fitted open Newton-Cotes differential methods as multilayer symplectic integrators. J. Chem. Phys. 132, 204107 (2010) · doi:10.1063/1.3442718
[70] Z. Kalogiratou, T. Monovasilis, T.E. Simos, A fifth-order symplectic trigonometrically fitted partitioned Runge-Kutta method, in International Conference on Numerical Analysis and Applied Mathematics, SEP 16-20, 2007 Corfu, GREECE, Numerical Analysis and Applied Mathematics, AIP Conference Proceedings936, 313-317 (2007). · Zbl 1152.65352
[71] T. Monovasilis, Z. Kalogiratou, T.E. Simos, Families of third and fourth algebraic order trigonometrically fitted symplectic methods for the numerical integration of Hamiltonian systems. Comput. Phys. Commun. 177(10), 757-763 (2007) · Zbl 1196.65192 · doi:10.1016/j.cpc.2007.05.020
[72] T. Monovasilis, T.E. Simos, Symplectic methods for the numerical integration of the Schrödinger equation. Comput. Mater. Sci. 38(3), 526-532 (2007) · doi:10.1016/j.commatsci.2005.09.011
[73] T. Monovasilis, Z. Kalogiratou, T.E. Simos, Computation of the eigenvalues of the Schrödinger equation by symplectic and trigonometrically fitted symplectic partitioned Runge-Kutta methods. Phys. Lett. A 372(5), 569-573 (2008) · Zbl 1217.81061 · doi:10.1016/j.physleta.2007.08.012
[74] Z. Kalogiratou, Th Monovasilis, T.E. Simos, New modified Runge-Kutta-Nyström methods for the numerical integration of the Schrödinger equation. Comput. Math. Appl. 60(6), 1639-1647 (2010) · Zbl 1202.65092 · doi:10.1016/j.camwa.2010.06.046
[75] Th Monovasilis, Z. Kalogiratou, T.E. Simos, Two new phase-fitted symplectic partitioned Runge-Kutta methods. Int. J. Mod. Phys. C 22(12), 1343-1355 (2011) · Zbl 1263.65130 · doi:10.1142/S0129183111016932
[76] K. Tselios, T.E. Simos, Optimized fifth order symplectic integrators for orbital problems. Rev. Mex. Astron. Astrofis. 49(1), 11-24 (2013)
[77] T. Monovasilis, Z. Kalogiratou, T.E. Simos, Symplectic partitioned Runge-Kutta methods with minimal phase-lag. Comput. Phys. Commun. 181(7), 1251-1254 (2010) · Zbl 1219.65151 · doi:10.1016/j.cpc.2010.03.013
[78] L.Gr Ixaru, M. Rizea, A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies. Comput. Phys. Commun. 19, 23-27 (1980) · doi:10.1016/0010-4655(80)90062-4
[79] A.D. Raptis, A.C. Allison, Exponential-fitting methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 14, 1-5 (1978) · doi:10.1016/0010-4655(78)90047-4
[80] J. Vigo-Aguiar, T.E. Simos, Family of twelve steps exponential fitting symmetric multistep methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 32(3), 257-270 (2002) · Zbl 1014.81055
[81] G. Psihoyios, T.E. Simos, Trigonometrically fitted predictor-corrector methods for IVPs with oscillating solutions. J. Comput. Appl. Math. 158(1), 135-144 (2003) · Zbl 1027.65095 · doi:10.1016/S0377-0427(03)00481-3
[82] G. Psihoyios, T.E. Simos, A fourth algebraic order trigonometrically fitted predictor-corrector scheme for IVPs with oscillating solutions. J. Comput. Appl. Math. 175(1), 137-147 (2005) · Zbl 1063.65060 · doi:10.1016/j.cam.2004.06.014
[83] T.E. Simos, Dissipative trigonometrically-fitted methods for linear second-order IVPs with oscillating solution. Appl. Math. Lett. 17(5), 601-607 (2004) · Zbl 1062.65075 · doi:10.1016/S0893-9659(04)90133-4
[84] T.E. Simos, Exponentially and trigonometrically fitted methods for the solution of the Schrödinger equation. Acta Appl. Math. 110(3), 1331-1352 (2010) · Zbl 1192.65111 · doi:10.1007/s10440-009-9513-6
[85] G. Avdelas, E. Kefalidis, T.E. Simos, New P-stable eighth algebraic order exponentially-fitted methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 31(4), 371-404 (2002) · Zbl 1078.65061 · doi:10.1023/A:1021020705327
[86] T.E. Simos, A family of trigonometrically-fitted symmetric methods for the efficient solution of the Schrödinger equation and related problems J. Math. Chem. 34(1-2), 39-58 (2003) · Zbl 1029.65079
[87] T.E. Simos, Exponentially-fitted multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 36(1), 13-27 (2004) · Zbl 1050.65074 · doi:10.1023/B:JOMC.0000034930.81720.47
[88] T.E. Simos, A four-step exponentially fitted method for the numerical solution of the Schrödinger equation. J. Math. Chem. 40(3), 305-318 (2006) · Zbl 1125.81023 · doi:10.1007/s10910-006-9170-1
[89] H. Van de Vyver, A trigonometrically fitted explicit hybrid method for the numerical integration of orbital problems. Appl. Math. Comput. 189(1), 178-185 (2007) · Zbl 1344.65060 · doi:10.1016/j.amc.2006.11.079
[90] T.E. Simos, A family of four-step trigonometrically-fitted methods and its application to the Schrodinger equation. J. Math. Chem. 44(2), 447-466 (2009) · Zbl 1217.65139 · doi:10.1007/s10910-007-9319-6
[91] Z.A. Anastassi, T.E. Simos, A family of two-stage two-step methods for the numerical integration of the Schrödinger equation and related IVPs with oscillating solution. J. Math. Chem. 45(4), 1102-1129 (2009) · Zbl 1198.81075 · doi:10.1007/s10910-008-9439-7
[92] G. Psihoyios, T.E. Simos, Sixth algebraic order trigonometrically fitted predictor-corrector methods for the numerical solution of the radial Schrödinger equation. J. Math. Chem. 37(3), 295-316 (2005) · Zbl 1070.81044 · doi:10.1007/s10910-004-1471-7
[93] G. Psihoyios, T.E. Simos, The numerical solution of the radial Schrödinger equation via a trigonometrically fitted family of seventh algebraic order predictor-corrector methods. J. Math. Chem. 40(3), 269-293 (2006) · Zbl 1125.81022 · doi:10.1007/s10910-006-9168-8
[94] Z. Wang, P-stable linear symmetric multistep methods for periodic initial-value problems. Comput. Phys. Commun. 171(3), 162-174 (2005) · Zbl 1196.65113 · doi:10.1016/j.cpc.2005.05.004
[95] T.E. Simos, A new explicit Bessel and Neumann fitted eighth algebraic order method for the numerical solution of the Schrödinger equation. J. Math. Chem. 27(4), 343-356 (2000) · Zbl 1014.81012 · doi:10.1023/A:1018879924036
[96] Z.A. Anastassi, T.E. Simos, A family of two-stage two-step methods for the numerical integration of the Schrödinger equation and related IVPs with oscillating solution. J. Math. Chem. 45(4), 1102-1129 (2009) · Zbl 1198.81075 · doi:10.1007/s10910-008-9439-7
[97] C. Tang, W. Wang, H. Yan, Z. Chen, High-order predictorcorrector of exponential fitting for the N-body problems. J. Comput. Phys. 214(2), 505-520 (2006) · Zbl 1136.70302 · doi:10.1016/j.jcp.2005.09.028
[98] G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, Two optimized symmetric eight-step implicit methods for initial-value problems with oscillating solutions. J. Math. Chem. 46(2), 604-620 (2009) · Zbl 1198.81099 · doi:10.1007/s10910-008-9506-0
[99] S. Stavroyiannis, T.E. Simos, Optimization as a function of the phase-lag order of nonlinear explicit two-step P-stable method for linear periodic IVPs. Appl. Numer. Math. 59(10), 2467-2474 (2009) · Zbl 1169.65324 · doi:10.1016/j.apnum.2009.05.004
[100] S. Stavroyiannis, T.E. Simos, A nonlinear explicit two-step fourth algebraic order method of order infinity for linear periodic initial value problems. Comput. Phys. Commun. 181(8), 1362-1368 (2010) · Zbl 1219.65067 · doi:10.1016/j.cpc.2010.04.002
[101] Z.A. Anastassi, T.E. Simos, Numerical multistep methods for the efficient solution of quantum mechanics and related problems. Phys. Rep. 482, 1-240 (2009) · doi:10.1016/j.physrep.2009.07.005
[102] R. Vujasin, M. Sencanski, J. Radic-Peric, M. Peric, A comparison of various variational approaches for solving the one-dimensional vibrational Schrödinger equation. MATCH Commun. Math. Comput. Chem. 63(2), 363-378 (2010)
[103] T.E. Simos, P.S. Williams, On finite difference methods for the solution of the Schrödinger equation. Comput. Chem. 23, 513-554 (1999) · Zbl 0940.65082 · doi:10.1016/S0097-8485(99)00023-6
[104] L. Gr. Ixaru, M. Rizea, Comparison of some four-step methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 38(3), 329-337 (1985) · Zbl 0679.65053 · doi:10.1016/0010-4655(85)90100-6
[105] J. Vigo-Aguiar, T.E. Simos, Review of multistep methods for the numerical solution of the radial Schrödinger equation. Int. J. Quantum Chem. 103(3), 278-290 (2005) · doi:10.1002/qua.20495
[106] T.E. Simos, G. Psihoyios, Special issue: The international conference on computational methods in sciences and engineering 2004—preface. J. Comput. Appl. Math. 191(2), 165 (2006) · Zbl 1093.65504 · doi:10.1016/j.cam.2005.09.005
[107] T.E. Simos and G. Psihoyios, Special issue: Selected papers of the international conference on computational methods in sciences and engineering (ICCMSE 2003) Kastoria, Greece, 12-16 September 2003—preface. J. Comput. Appl. Math. 175(1), IX-IX (2005) · Zbl 1090.65506
[108] T.E. Simos, J. Vigo-Aguiar, Special Issue: Selected papers from the conference on computational and mathematical methods for science and engineering (CMMSE-2002)—Alicante University, Spain, 20-25 September 2002—preface. J. Comput. Appl. Math. 158(1), IX-IX (2003) · Zbl 1028.00531
[109] T.E. Simos, Preface for the special issue on the International Conference of Computational Methods in Sciences and Engineering 2005 (ICCMSE 2005). Appl. Math. Comput. 209(1), 1 (2009) · Zbl 1217.65054
[110] T.E. Simos, I. Gutman, Papers presented on the international conference on computational methods in sciences and engineering (Castoria, Greece, September 12-16, 2003), MATCH Commun. Math. Comput. Chem. 53(2), A3-A4 (2005) · Zbl 1079.70502
[111] J.R. Dormand, M.E.A. El-Mikkawy, P.J. Prince, Families of Runge-Kutta-Nyström formulae. IMA J. Numer. Anal. 7, 235-250 (1987) · Zbl 0624.65059 · doi:10.1093/imanum/7.2.235
[112] J.R. Dormand, P.J. Prince, A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6, 19-26 (1980) · Zbl 0448.65045 · doi:10.1016/0771-050X(80)90013-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.