Skip to main content
Log in

New high order multiderivative explicit four-step methods with vanished phase-lag and its derivatives for the approximate solution of the Schrödinger equation. Part I: Construction and theoretical analysis

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this paper we develop and study new high algebraic order multiderivative explicit four-step method with phase-lag and its first, second and third derivatives equal to zero. For the produced methods we investigate their errors and stability. Based on the above mentioned analysis we will arrive to some remarks and conclusions about their the efficiency to the numerical integration of the radial Schrödinger equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ixaru L.Gr., Micu M.: Topics in Theoretical Physics. Central Institute of Physics, Bucharest (1978)

    Google Scholar 

  2. Landau L.D., Lifshitz F.M.: Quantum Mechanics. Pergamon, New York (1965)

    Google Scholar 

  3. I. Prigogine, S. Rice (eds) Advances in Chemical Physics, vol 93: New Methods in Computational Quantum Mechanics (Wiley, 1997)

  4. Herzberg G.: Spectra of Diatomic Molecules. Van Nostrand, Toronto (1950)

    Google Scholar 

  5. Simos T.E., Vigo-Aguiar J.: A modified phase-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation. J. Math. Chem. 30(1), 121–131 (2001)

    Article  CAS  Google Scholar 

  6. Tselios K., Simos T.E.: Runge-Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics. J. Comput. Appl. Math. 175(1), 173–181 (2005)

    Article  Google Scholar 

  7. Anastassi Z.A., Simos T.E.: An optimized Runge-Kutta method for the solution of orbital problems. J. Comput. Appl. Math. 175(1), 1–9 (2005)

    Article  Google Scholar 

  8. Kosti A.A., Anastassi Z.A., Simos T.E.: Construction of an optimized explicit Runge-Kutta- Nyström method for the numerical solution of oscillatory initial value problems. Comput. Math. Appl. 61(11), 3381–3390 (2011)

    Article  Google Scholar 

  9. Papadopoulos D.F., Simos T.E.: A new methodology for the construction of optimized Runge-Kutta-Nyström methods. Int. J. Modern Phys. C 22(6), 623–634 (2011)

    Article  Google Scholar 

  10. Kosti A.A., Anastassi Z.A., Simos T.E.: An optimized explicit Runge-Kutta-Nyström method for the numerical solution of orbital and related periodical initial value problems. Comput. Phys. Commun. 183(3), 470–479 (2012)

    Article  CAS  Google Scholar 

  11. Kosti A.A., Anastassi Z.A., Simos T.E.: An optimized explicit Runge-Kutta method with increased phase-lag order for the numerical solution of the Schrödinger equation and related problems. J. Math. Chem. 47(1), 315–330 (2010)

    Article  CAS  Google Scholar 

  12. Kalogiratou Z., Simos T.E.: Construction of trigonometrically and exponentially fitted Runge-Kutta- Nyström methods for the numerical solution of the Schrödinger equation and related problems a method of 8th algebraic order. J. Math. Chem. 31(2), 211–232 (2002)

    Article  CAS  Google Scholar 

  13. Simos T.E.: A fourth algebraic order exponentially-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation. IMA J. Numeri. Anal. 21(4), 919–931 (2001)

    Article  Google Scholar 

  14. Simos T.E.: Exponentially-fitted Runge-Kutta-Nyström method for the numerical solution of initial-value problems with oscillating solutions. Appl. Math. Lett. 15(2), 217–225 (2002)

    Article  Google Scholar 

  15. Tsitouras Ch., Simos T.E.: Optimized Runge-Kutta pairs for problems with oscillating solutions. J. Comput. Appl. Math. 147(2), 397–409 (2002)

    Article  Google Scholar 

  16. Anastassi Z.A., Simos T.E.: Trigonometrically fitted Runge-Kutta methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 281–293 (2005)

    Article  CAS  Google Scholar 

  17. Anastassi Z.A., Simos T.E.: A family of exponentially-fitted Runge-Kutta methods with exponential order up to three for the numerical solution of the Schrödinger equation. J. Math. Chem. 41(1), 79–100 (2007)

    Article  CAS  Google Scholar 

  18. Lambert J.D., Watson I.A.: Symmetric multistep methods for periodic initial values problems. J. Inst. Math. Appl. 18, 189–202 (1976)

    Article  Google Scholar 

  19. Quinlan G.D., Tremaine S.: Symmetric multistep methods for the numerical integration of planetary orbits. Astron. J. 100, 1694–1700 (1990)

    Article  Google Scholar 

  20. Tsitouras Ch., Famelis I.Th., Simos T.E.: On modified Runge-Kutta trees and methods. Comput. Math. Appl. 62(4), 2101–2111 (2011)

    Article  Google Scholar 

  21. Alolyan I., Anastassi Z.A., Simos T.E.: A new family of symmetric linear four-step methods for the efficient integration of the Schrödinger equation and related oscillatory problems. Appl. Math. Comput. 218(9), 5370–5382 (2012)

    Article  Google Scholar 

  22. http://burtleburtle.net/bob/math/multistep.html

  23. Avdelas G., Konguetsof A., Simos T.E.: A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation. Part 1. Development of the basic method. J. Math. Chem. 29(4), 281–291 (2001)

    Article  CAS  Google Scholar 

  24. Chawla M.M., Rao P.S.: An explicit sixth—order method with phase-lag of order eight for y′′ =  f(t, y). J. Comput. Appl. Math. 17, 363–368 (1987)

    Google Scholar 

  25. Chawla M.M., Rao P.S.: An Noumerov-typ method with minimal phase-lag for the integration of second order periodic initial-value problems II explicit method. J. Comput. Appl. Math. 15, 329–337 (1986)

    Article  Google Scholar 

  26. Simos T.E., Williams P.S.: A finite difference method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 79, 189–205 (1997)

    Article  Google Scholar 

  27. Avdelas G., Konguetsof A., Simos T.E.: A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation. Part 2. Development of the generator; optimization of the generator and numerical results. J. Math. Chem. 29(4), 293–305 (2001)

    Article  CAS  Google Scholar 

  28. Simos T.E., Vigo-Aguiar J.: Symmetric eighth algebraic order methods with minimal phase-lag for the numerical solution of the Schrödinger equation. J. Math. Chem. 31(2), 135–144 (2002)

    Article  CAS  Google Scholar 

  29. Konguetsof A., Simos T.E.: A generator of hybrid symmetric four-step methods for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 93–106 (2003)

    Article  Google Scholar 

  30. Simos T.E., Famelis I.T., Tsitouras C.: Zero dissipative, explicit numerov-type methods for second order IVPs with oscillating solutions. Numer. Algorithm. 34(1), 27–40 (2003)

    Article  Google Scholar 

  31. Simos T.E.: Optimizing a class of linear multi-step methods for the approximate solution of the radial Schrödinger equation and related problems with respect to phase-lag. Cent. Eur. J. Phys. 9(6), 1518–1535 (2011)

    Article  Google Scholar 

  32. Vande Vyver H.: Phase-fitted and amplification-fitted two-step hybrid methods for y′′ =  f(x, y). J. Comput. Appl. Math. 209(1), 33–53 (2007)

    Article  Google Scholar 

  33. Vande Vyver H.: An explicit Numerov-type method for second-order differential equations with oscillating solutions. Comput. Math. Appl. 53, 1339–1348 (2007)

    Article  Google Scholar 

  34. Simos T.E.: A new Numerov-type method for the numerical solution of the Schrödinger equation. J. Math. Chem. 46(3), 981–1007 (2009)

    Article  CAS  Google Scholar 

  35. Alolyan I., Simos T.E.: High algebraic order methods with vanished phase-lag and its first derivative for the numerical solution of the Schrödinger equation. J. Math. Chem. 48(4), 925–958 (2010)

    Article  CAS  Google Scholar 

  36. Alolyan I., Simos T.E.: Multistep methods with vanished phase-lag and its first and second derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem. 48(4), 1092–1143 (2010)

    Article  CAS  Google Scholar 

  37. Alolyan I., Simos T.E.: A family of eight-step methods with vanished phase-lag and its derivatives for the numerical integration of the Schrd̈inger equation. J. Math. Chem. 49(3), 711–764 (2011)

    Article  CAS  Google Scholar 

  38. Stavroyiannis S., Simos T.E.: Optimization as a function of the phase-lag order of nonlinear explicit two-step P-Stable method for linear periodic IVPs. Appl. Numer. Math. 59(10), 2467–2474 (2009)

    Article  Google Scholar 

  39. Panopoulos G.A., Anastassi Z.A., Simos T.E.: A new symmetric eight-step predictor-corrector method for the numerical solution of the radial Schrödinger equation and related orbital problems. Int. J. Modern Phys. C 22(2), 133–153 (2011)

    Article  Google Scholar 

  40. Panopoulos G.A., Anastassi Z.A., Simos T.E.: A symmetric eight-step predictor-corrector method for the numerical solution of the radial Schrödinger equation and related IVPs with oscillating solutions. Comput. Phys. Commun. 182(8), 1626–1637 (2011)

    Article  CAS  Google Scholar 

  41. T.E. Simos, Optimizing a hybrid two-step method for the numerical solution of the Schrödinger equation and related problems with respect to phase-lag. J. Appl. Math. (Article ID 420387) (2012)

  42. Alolyan I., Simos T.E.: On eight-step methods with vanished phase-lag and its derivatives for the numerical solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 66(2), 473–546 (2011)

    Google Scholar 

  43. Alolyan I., Simos T.E.: A family of ten-step methods with vanished phase- lag and its first derivative for the numerical solution of the Schrödinger equation. J. Math. Chem. 49(9), 1843–1888 (2011)

    Article  CAS  Google Scholar 

  44. Alolyan I., Simos T.E.: A family of high-order multistep methods with vanished phase-lag and its derivatives for the numerical solution of the Schrödinger equation. Comput. Math. Appl. 62(10), 3756–3774 (2011)

    Article  Google Scholar 

  45. Simos T.E.: A two-step method with vanished phase-lag and its first two derivatives for the numerical solution of the Schrödinger equation. J. Math. Chem. 49(10), 2486–2518 (2011)

    Article  CAS  Google Scholar 

  46. I. Alolyan, T.E. Simos, A new hybrid two-step method with vanished phase-lag and its first and second derivatives for the numerical solution of the Schrödinger equation and related problems. J. Math. Chem. (in press)

  47. Konguetsof A.: A new two-step hybrid method for the numerical solution of the Schrödinger equation. J. Math. Chem. 47(2), 871–890 (2010)

    Article  CAS  Google Scholar 

  48. Tselios K., Simos T.E.: Symplectic methods for the numerical solution of the radial Shrödinger equation. J. Math. Chem. 34(1–2), 83–94 (2003)

    Article  CAS  Google Scholar 

  49. Tselios K., Simos T.E.: Symplectic methods of fifth order for the numerical solution of the radial Shrodinger equation. J. Math. Chem. 35(1), 55–63 (2004)

    Article  CAS  Google Scholar 

  50. Monovasilis T., Simos T.E.: New second-order exponentially and trigonometrically fitted symplectic integrators for the numerical solution of the time-independent Schrödinger equation. J. Math. Chem. 42(3), 535–545 (2007)

    Article  CAS  Google Scholar 

  51. Monovasilis T., Kalogiratou Z., Simos T.E.: Exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 37(3), 263–270 (2005)

    Article  CAS  Google Scholar 

  52. Monovasilis T., Kalogiratou Z., Simos T.E.: Trigonometrically fitted and exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 40(3), 257–267 (2006)

    Article  CAS  Google Scholar 

  53. Kalogiratou Z., Monovasilis T., Simos T.E.: Symplectic integrators for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 83–92 (2003)

    Article  Google Scholar 

  54. Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae of high-order for long-time integration of orbital problems. Appl. Math. Lett. 22(10), 1616–1621 (2009)

    Article  Google Scholar 

  55. Kalogiratou Z., Simos T.E.: Newton-Cotes formulae for long-time integration. J. Comput. Appl. Math. 158(1), 75–82 (2003)

    Article  Google Scholar 

  56. Simos T.E.: High order closed Newton-Cotes trigonometrically- fitted formulae for the numerical solution of the Schrödinger equation. Appl. Math. Comput. 209(1), 137–151 (2009)

    Article  Google Scholar 

  57. Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae for the solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 60(3), 787–801 (2008)

    CAS  Google Scholar 

  58. Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae of high order for the numerical integration of the Schrödinger equation. J. Math. Chem. 44(2), 483–499 (2008)

    Article  CAS  Google Scholar 

  59. Simos T.E.: High-order closed Newton-Cotes trigonometrically-fitted formulae for long-time integration of orbital problems. Comput. Phys. Commun. 178(3), 199–207 (2008)

    Article  CAS  Google Scholar 

  60. Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae for numerical integration of the Schrödinger equation. Comput. Lett. 3(1), 45–57 (2007)

    Article  Google Scholar 

  61. Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae for long-time integration of orbital problems. RevMexAA 42(2), 167–177 (2006)

    Google Scholar 

  62. Simos T.E.: Closed Newton-Cotes trigonometrically-fitted formulae for long-time integration. Int. J. Mod. Phys. C 14(8), 1061–1074 (2003)

    Article  Google Scholar 

  63. T.E. Simos, New closed Newton-Cotes type formulae as multilayer symplectic integrators. J. Chem. Phys. 133(10) Article Number: 104108 (2010)

    Google Scholar 

  64. T.E. Simos, New stable Closed Newton-Cotes trigonometrically fitted formulae for long-time integration. Abstr. Appl. Anal. Article ID 182536 (2012)

  65. Berghe G.V., Van Daele M.: Exponentially fitted open Newton-Cotes differential methods as multilayer symplectic integrators. J. Chem. Phys. 132, 204107 (2010)

    Article  CAS  Google Scholar 

  66. Z. Kalogiratou, T. Monovasilis, T.E. Simos, A fifth-order symplectic trigonometrically fitted partitioned Runge-Kutta method. in International Conference on Numerical Analysis and Applied Mathematics, SEP 16–20, 2007 Corfu, Greece. Numerical Analysis and Applied Mathematics, AIP Conference Proceedings, vol 936. pp. 313–317 (2007)

  67. Monovasilis T., Kalogiratou Z., Simos T.E.: Families of third and fourth algebraic order trigonometrically fitted symplectic methods for the numerical integration of Hamiltonian systems. Comput. Phys. Commun. 177(10), 757–763 (2007)

    Article  CAS  Google Scholar 

  68. Monovasilis T., Simos T.E.: Symplectic methods for the numerical integration of the Schrödinger equation. Comput. Mater. Sci. 38(3), 526–532 (2007)

    Article  CAS  Google Scholar 

  69. Monovasilis T., Kalogiratou Z., Simos T.E.: Computation of the eigenvalues of the Schrödinger equation by symplectic and trigonometrically fitted symplectic partitioned Runge-Kutta methods. Phys. Lett. A 372(5), 569–573 (2008)

    Article  CAS  Google Scholar 

  70. Kalogiratou Z., Monovasilis Th., Simos T.E.: New modified Runge-Kutta-Nyström methods for the numerical integration of the Schrödinger equation. Comput. Math. Appl. 60(6), 1639–1647 (2010)

    Article  Google Scholar 

  71. Monovasilis Th., Kalogiratou Z., Simos T.E.: Two new phase-fitted symplectic partitioned Runge-Kutta methods. Int. J. Modern Phys. C 22(12), 1343–1355 (2011)

    Article  Google Scholar 

  72. Monovasilis T., Kalogiratou Z., Simos T.E.: Symplectic partitioned Runge-Kutta methods with minimal phase-lag. Comput. Phys. Commun. 181(7), 1251–1254 (2010)

    Article  CAS  Google Scholar 

  73. Ixaru L.Gr., Rizea M.: A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies. Comput. Phys. Commun. 19, 23–27 (1980)

    Article  Google Scholar 

  74. Raptis A.D., Allison A.C.: Exponential-fitting methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 14, 1–5 (1978)

    Article  Google Scholar 

  75. J. Vigo-Aguiar, T.E. Simos, Family of twelve steps exponential fitting symmetric multistep methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 32(3), 257–270 (2002)

    Google Scholar 

  76. Psihoyios G., Simos T.E.: Trigonometrically fitted predictor-corrector methods for IVPs with oscillating solutions. J. Comput. Appl. Math. 158(1), 135–144 (2003)

    Article  Google Scholar 

  77. Psihoyios G., Simos T.E.: A fourth algebraic order trigonometrically fitted predictor-corrector scheme for IVPs with oscillating solutions. J. Comput. Appl. Math. 175(1), 137–147 (2005)

    Article  Google Scholar 

  78. Simos T.E.: Dissipative trigonometrically-fitted methods for linear second-order IVPs with oscillating solution. Appl. Math. Lett. 17(5), 601–607 (2004)

    Article  Google Scholar 

  79. Simos T.E.: Exponentially and trigonometrically fitted methods for the solution of the Schrödinger equation. Acta Appl. Math. 110(3), 1331–1352 (2010)

    Article  Google Scholar 

  80. Avdelas G., Kefalidis E., Simos T.E.: New P-stable eighth algebraic order exponentially- fitted methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 31(4), 371–404 (2002)

    Article  CAS  Google Scholar 

  81. Simos T.E.: A family of trigonometrically-fitted symmetric methods for the efficient solution of the Schrödinger equation and related problems. J. Math. Chem. 34(1–2), 39–58 (2003)

    Article  CAS  Google Scholar 

  82. Simos T.E.: A four-step exponentially fitted method for the numerical solution of the Schrödinger equation. J. Math. Chem. 40(3), 305–318 (2006)

    Article  CAS  Google Scholar 

  83. Vande Vyver H.: A trigonometrically fitted explicit hybrid method for the numerical integration of orbital problems. Appl. Math. Comput. 189(1), 178–185 (2007)

    Article  Google Scholar 

  84. Simos T.E.: A family of four-step trigonometrically-fitted methods and its application to the Schrodinger equation. J. Math. Chem. 44(2), 447–466 (2009)

    Article  CAS  Google Scholar 

  85. Anastassi Z.A., Simos T.E.: A family of two-stage two-step methods for the numerical integration of the Schrödinger equation and related IVPs with oscillating solution. J. Math. Chem. 45(4), 1102–1129 (2009)

    Article  CAS  Google Scholar 

  86. Psihoyios G., Simos T.E.: Sixth algebraic order trigonometrically fitted predictor-corrector methods for the numerical solution of the radial Schrödinger equation. J. Math. Chem. 37(3), 295–316 (2005)

    Article  CAS  Google Scholar 

  87. Psihoyios G., Simos T.E.: The numerical solution of the radial Schrödinger equation via a trigonometrically fitted family of seventh algebraic order Predictor-Corrector methods. J. Math. Chem. 40(3), 269–293 (2006)

    Article  CAS  Google Scholar 

  88. Wang Z.: P-stable linear symmetric multistep methods for periodic initial-value problems. Comput. Phys. Commun. 171(3), 162–174 (2005)

    Article  CAS  Google Scholar 

  89. Simos T.E.: A new explicit Bessel and Neumann fitted eighth algebraic order method for the numerical solution of the Schrödinger equation. J. Math. Chem. 27(4), 343–356 (2000)

    Article  CAS  Google Scholar 

  90. Anastassi Z.A., Simos T.E.: A family of two-stage two-step methods for the numerical integration of the Schrödinger equation and related IVPs with oscillating solution. J. Math. Chem. 45(4), 1102–1129 (2009)

    Article  CAS  Google Scholar 

  91. Tang C., Wang W., Yan H., Chen Z.: High-order predictor-corrector of exponential fitting for the N-body problems. J. Comput. Phys. 214(2), 505–520 (2006)

    Article  CAS  Google Scholar 

  92. Panopoulos G.A., Anastassi Z.A., Simos T.E.: Two optimized symmetric eight-step implicit methods for initial-value problems with oscillating solutions. J. Math. Chem. 46(2), 604–620 (2009)

    Article  CAS  Google Scholar 

  93. Stavroyiannis S., Simos T.E.: Optimization as a function of the phase-lag order of nonlinear explicit two-step P-stable method for linear periodic IVPs. Appl. Numer. Math. 59(10), 2467–2474 (2009)

    Article  Google Scholar 

  94. Stavroyiannis S., Simos T.E.: A nonlinear explicit two-step fourth algebraic order method of order infinity for linear periodic initial value problems. Comput. Phys. Commun. 181(8), 1362–1368 (2010)

    Article  CAS  Google Scholar 

  95. Anastassi Z.A., Simos T.E.: Numerical multistep methods for the efficient solution of quantum mechanics and related problems. Phys. Rep. 482–483, 1–240 (2009)

    Article  CAS  Google Scholar 

  96. Vujasin R., Sencanski M., Radic-Peric J., Peric M.: A comparison of various variational approaches for solving the one-dimensional vibrational Schrödinger equation. MATCH Commun. Math. Comput. Chem. 63(2), 363–378 (2010)

    CAS  Google Scholar 

  97. Simos T.E., Williams P.S.: On finite difference methods for the solution of the Schrödinger equation. Comput. Chem. 23, 513–554 (1999)

    Article  CAS  Google Scholar 

  98. Ixaru L.Gr., Rizea M.: Comparison of some four-step methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 38(3), 329–337 (1985)

    Article  CAS  Google Scholar 

  99. Vigo-Aguiar J., Simos T.E.: Review of multistep methods for the numerical solution of the radial Schrödinger equation. Int. J. Quantum Chem. 103(3), 278–290 (2005)

    Article  CAS  Google Scholar 

  100. Dormand J.R., El-Mikkawy M.E.A., Prince P.J.: Families of Runge-Kutta-Nyström formulae. IMA J. Numer. Anal. 7, 235–250 (1987)

    Article  Google Scholar 

  101. Dormand J.R., Prince P.J.: A family of embedded RungeKutta formulae. J. Comput. Appl. Math. 6, 19–26 (1980)

    Article  Google Scholar 

  102. Simos T.E., Zdetsis A.D., Psihoyios G., Anastassi Z.A.: Special issue on mathematical chemistry based on papers presented within ICCMSE 2005 preface. J. Math. Chem. 46(3), 727–728 (2009)

    Article  CAS  Google Scholar 

  103. Simos T.E., Psihoyios G., Anastassi Z.: Preface, proceedings of the international conference of computational methods in sciences and engineering 2005. Math. Comput. Model. 51(3–4), 137 (2010)

    Article  Google Scholar 

  104. Simos T.E., Psihoyios G.: Special issue: the international conference on computational methods in sciences and engineering 2004—preface. J. Comput. Appl. Math. 191(2), 165 (2006)

    Article  Google Scholar 

  105. T.E. Simos, G. Psihoyios, Special issue—selected Papers of the international conference on computational methods in sciences and engineering (ICCMSE 2003) Kastoria, Greece, 12–16 September 2003—Preface. J. Comput. Appl. Math. 175(1) IX (2005)

  106. T.E. Simos, J. Vigo-Aguiar, Special issue—selected papers from the conference on computational and mathematical methods for science and engineering (CMMSE-2002)—Alicante University, Spain, 20–25 September 2002—Preface. J. Comput. Appl. Math. 158(1) IX (2003)

  107. T.E. Simos, Ch. Tsitouras, I. Gutman, Preface for the special issue numerical methods in chemistry. MATCH Commun. Math. Comput. Chem. 60 (3) (2008)

  108. Simos T.E., Gutman I.: Papers presented on the international conference on computational methods in sciences and engineering (Castoria, Greece, September 12–16, 2003). MATCH Commun. Math. Comput. Chem. 53(2), A3–A4 (2005)

    Google Scholar 

  109. Achar S.D.: Symmetric multistep Obrechkoff methods with zero phase-lag for periodic initial value problems of second order differential equations. Appl. Math. Comput. 218(5), 2237–2248 (2011)

    Google Scholar 

  110. Shokri A., Rahimi Ardabili M.Y., Shahmorad S., Hojjati G.: A new two-step P-stable hybrid Obrechkoff method for the numerical integration of second-order IVPs. J. Comput. Appl. Math. 235(6), 1706–1712 (2011)

    Article  Google Scholar 

  111. D. Hollevoet, M. Van Daele, G. Vanden Berghe, Multi-parameter exponentially fitted, P-stable Obrechkoff Methods. in International conference on numerical analysis and applied mathematics (ICNAAM) Halkidiki, Greece, SEP 19–25, 2011. Numerical Analysis And Applied Mathematics ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics, vols A–C Book Series: AIP Conference Proceedings, vol 1389. doi:10.1063/1.3636706 (2011)

  112. Hao H-L., Wang Z-C., Shao H-Z., Chen J-Q.: A P-Stable two-step Obrechkoff method for one-dimensional Schrödinger equation. J. Shanghai Univ. 16(1), 53–58 (2010)

    Google Scholar 

  113. Daele M., Vanden Berghe G.: P-stable exponentially-fitted Obrechkoff methods of arbitrary order for second-order differential equations. Numer. Algorithm. 46(4), 333–350 (2007)

    Article  Google Scholar 

  114. Neta B.: P-stable high-order super-implicit and Obrechkoff methods for periodic initial value problems. Comput. Math. Appl. 54(1), 117–126 (2007)

    Article  Google Scholar 

  115. Sakas D.P., Simos T.E.: Multiderivative methods of eighth algrebraic order with minimal phase-lag for the numerical solution of the radial Schrödinger equation. J. Comput. Appl. Math. 175(1), 161–172 (2005)

    Article  Google Scholar 

  116. Sakas D.P., Simos T.E.: A family of multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 317–331 (2005)

    Article  CAS  Google Scholar 

  117. Simos T.E.: Exponentially—fitted multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 36(1), 13–27 (2004)

    Article  CAS  Google Scholar 

  118. Van Daele M., Vanden Berghe G.: P-stable Obrechkoff methods of arbitrary order for second-order differential equations. Numer. Algorithm. 44(2), 115–131 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Simos.

Additional information

T. E. Simos: Highly Cited Researcher (http://isihighlycited.com/), Active Member of the European Academy of Sciences and Arts. Active Member of the European Academy of Sciences. Corresponding Member of European Academy of Arts, Sciences and Humanities.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simos, T.E. New high order multiderivative explicit four-step methods with vanished phase-lag and its derivatives for the approximate solution of the Schrödinger equation. Part I: Construction and theoretical analysis. J Math Chem 51, 194–226 (2013). https://doi.org/10.1007/s10910-012-0074-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-012-0074-y

Keywords

Mathematics Subject Classification

Navigation