×

Jensen’s and martingale inequalities in Riesz spaces. (English) Zbl 1307.47095

The role of positivity in probability theory and stochastic processes was investigated in several papers by C. C. A. Labuschagne, B. A. Watson, and Wen-Chi Kuo, V. Troitsky and the author of the present paper. The ideas on stochastic processes in vector lattices were also applied by S. F. Cullender and C. C. A. Labuschagne to get information about martingale convergence in Bochner spaces. Stochastic variables are elements of function spaces and a natural correspondence exists between stochastic variables and elements of a general vector lattice, events (i.e., sets) and order projections in the vector lattice, \(\sigma\)-algebras of sets and Boolean algebras of order projections. The role of a probability measure is played by a conditional expectation operator, i.e., a positive order continuous projection mapping the vector lattice onto a Dedekind complete Riesz subspace. Thus, the theory of probability and stochastic processes relies on many abstract notions involving positivity. The present paper gives a proof of Jensen’s inequality for conditional expectations. Halmos’s optimal skipping theorem, a new approach to the upcrossing theorem, and the upcrossing inequality, martingale inequalities, and Doob’s inequality are also given.

MSC:

47N30 Applications of operator theory in probability theory and statistics
60E15 Inequalities; stochastic orderings
60G44 Martingales with continuous parameter
46A40 Ordered topological linear spaces, vector lattices
47B65 Positive linear operators and order-bounded operators
47A60 Functional calculus for linear operators
Full Text: DOI

References:

[1] Aliprantis, C. D.; Burkinshaw, O., Locally solid Riesz spaces (1978), Academic Press: Academic Press New York, San Francisco, London · Zbl 0402.46005
[2] Aliprantis, C. D.; Burkinshaw, O., Positive Operators (1985), Academic Press Inc.: Academic Press Inc. Orlando, San Diego, New York, London · Zbl 0567.47037
[3] Ash, R. B.; Doléans-Dade, C. A., Probability & Measure Theory (2000), Harcourt/Academic Press: Harcourt/Academic Press Massachusetts · Zbl 0944.60004
[4] Cullender, S. F.; Labuschagne, C. C.A., A description of norm-convergent martingales on vector valued \(L^p\)-spaces, J. Math. Anal. Appl., 323, 119-130 (2006) · Zbl 1143.46020
[5] Cullender, S. F.; Labuschagne, C. C.A., Convergent martingales of operators and the Radon-Nikodỳm property in Banach spaces, Proc. Amer. Math. Soc., 136, 3883-3893 (2008) · Zbl 1167.46014
[6] Donner, K., (Extension of Positive Operators and Korovkin Theorems. Extension of Positive Operators and Korovkin Theorems, Lecture Notes in Mathematics, vol. 904 (1982), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York) · Zbl 0481.47024
[7] Fremlin, D. H., Topological Riesz Spaces and Measure Theory (1974), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0273.46035
[8] Grobler, J. J., Continuous stochastic processes in Riesz spaces: the Doob-Meyer decomposition, Positivity, 14, 731-751 (2010) · Zbl 1216.46005
[9] Grobler, J. J., Doob’s optional sampling theorem in Riesz spaces, Positivity, 15, 617-637 (2011) · Zbl 1242.60041
[10] Karatzas, I.; Shreve, S. E., (Brownian Motion and Stochastic Calculus. Brownian Motion and Stochastic Calculus, Graduate Texts in Mathematics (1991), Springer: Springer New York, Berlin, Heidelberg) · Zbl 0734.60060
[12] Kuo, W.-C.; Labuschagne, C. C.A.; Watson, B. A., An upcrossing theorem for martingales on Riesz spaces, (Soft Methodology and Random Information Systems (2004), Springer-Verlag), 101-108 · Zbl 1057.60003
[13] Kuo, W.-C.; Labuschagne, C. C.A.; Watson, B. A., Discrete time stochastic processes on Riesz spaces, Indag. Math., 15, 435-451 (2004) · Zbl 1057.60041
[14] Kuo, W.-C.; Labuschagne, C. C.A.; Watson, B. A., Conditional expectation on Riesz spaces, J. Math. Anal. Appl., 303, 509-521 (2005) · Zbl 1075.46002
[15] Kuo, W.-C.; Labuschagne, C. C.A.; Watson, B. A., Zero-one laws for Riesz space and fuzzy random variables, (Fuzzy Logic, Soft Computing and Computational Intelligence (2005), Springer-Verlag and Tsinghua University Press: Springer-Verlag and Tsinghua University Press Beijing, China), 393-397
[16] Kuo, W.-C.; Labuschagne, C. C.A.; Watson, B. A., Convergence of Riesz space martingales, Indag. Math., 17, 271-283 (2006) · Zbl 1105.47034
[17] Kuo, W.-C.; Labuschagne, C. C.A.; Watson, B. A., Ergodic theory and the strong law of large numbers on Riesz spaces, J. Math. Anal. Appl., 325, 422-437 (2007) · Zbl 1114.46015
[18] Loéve, M., (Probabiblity Theory I and II. Probabiblity Theory I and II, Graduate Texts in Mathematics, vol. 45 (1977), Springer-Verlag: Springer-Verlag New York, Berlin, Heidelberg) · Zbl 0359.60001
[19] Luxemburg, W. A.J.; Zaanen, A. C., Riesz Spaces I (1971), North-Holland Publishing Company: North-Holland Publishing Company Amsterdam, London · Zbl 0231.46014
[20] Meyer-Nieberg, P., Banach Lattices (1991), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York · Zbl 0743.46015
[21] Revuz, D.; Yor, M., (Continuous Martingales and Brownian Motion. Continuous Martingales and Brownian Motion, Grundlehren der mathematischen Wissenschaften, vol. 293 (1991), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong, Barcelona) · Zbl 0731.60002
[22] Schaefer, H. H., Banach Lattices and Positive Operators (1974), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York · Zbl 0296.47023
[23] Troitsky, V., Martingales in Banach lattices, Positivity, 9, 437-456 (2005) · Zbl 1101.60028
[24] Vulikh, B. Z., Introduction to the Theory of Partially Ordered Spaces (1967), Wolters-Noordhoff Scientific Publications Ltd.: Wolters-Noordhoff Scientific Publications Ltd. Groningen, Translated from the Russian by L.F. Boron · Zbl 0186.44601
[25] Watson, B. A., An Ândo-Douglas type theorem in Riesz spaces with a conditional expectation, Positivity, 13, 3, 543-558 (2009) · Zbl 1186.47038
[26] Zaanen, A. C., Riesz Spaces II (1983), North-Holland: North-Holland Amsterdam, New York · Zbl 0519.46001
[27] Zaanen, A. C., Introduction to Operator theory in Riesz spaces (1991), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.