×

Doob’s optional sampling theorem in Riesz spaces. (English) Zbl 1242.60041

This paper is a continuation of the author’s paper [Positivity 14, No. 4, 731–751 (2010; Zbl 1216.46005)] where the author defined continuous time stochastic processes in Riesz spaces and proved the Doob-Meyer decomposition theorem for martingales. In this paper the notions of stopping times and stopped processes for continuous stochastic processes are defined and studied in the framework of Riesz spaces. These considerations lead to a formulation and proof of Doob’s optimal sampling theorem.

MSC:

60G40 Stopping times; optimal stopping problems; gambling theory
06F20 Ordered abelian groups, Riesz groups, ordered linear spaces
46A40 Ordered topological linear spaces, vector lattices
60G44 Martingales with continuous parameter
60G07 General theory of stochastic processes

Citations:

Zbl 1216.46005
Full Text: DOI

References:

[1] Aliprantis C.D., Burkinshaw O.: Locally solid Riesz spaces. Academic Press, New York (1978) · Zbl 0402.46005
[2] Aliprantis C.D., Burkinshaw O.: Positive Operators. Academic Press Inc., Orlando (1985) · Zbl 0608.47039
[3] DeMarr R.: A martingale convergence theorem in vector lattices. Canad. J. Math. 18, 424–432 (1966) · Zbl 0142.14004 · doi:10.4153/CJM-1966-045-x
[4] Fremlin D.H.: Topological Riesz spaces and measure theory. Cambridge University Press, Cambridge (1974) · Zbl 0273.46035
[5] Grobler J.J.: Continuous stochastic processes in Riesz spaces: the Doob–Meyer decomposition. Positivity 14, 731–751 (2010) · Zbl 1216.46005 · doi:10.1007/s11117-010-0088-2
[6] Grobler J.J., de Pagter B.: Operators representable as multiplication-conditional expectation operators. J. Oper. Theory 48, 15–40 (2002) · Zbl 1019.47031
[7] Karatzas I., Shreve S.E.: Brownian motion and stochastic calculus, Graduate Texts in Mathematics. Springer, New York (1991) · Zbl 0734.60060
[8] Kuo, W.-C.: Stochastic processes on vector lattices, Thesis, University of the Witwatersrand, Johannesburg (2006)
[9] Kuo W.-C., Labuschagne C.C.A., Watson B.A.: Discrete time stochastic processes on Riesz spaces. Indag. Math. 15, 435–451 (2004) · Zbl 1057.60041 · doi:10.1016/S0019-3577(04)80010-7
[10] Kuo, W.-C., Labuschagne, C.C.A., Watson, B.A.: An upcrossing theorem for martingales on Riesz spaces, Soft methodology and random information systems, pp. 101–108. Springer, Berlin (2004) · Zbl 1057.60003
[11] Kuo W.-C., Labuschagne C.C.A., Watson B.A.: Conditional expectation on Riesz spaces. J. Math. Anal. Appl. 303, 509–521 (2005) · Zbl 1075.46002 · doi:10.1016/j.jmaa.2004.08.050
[12] Kuo, W.-C., Labuschagne, C.C.A., Watson, B.A.: Zero-one laws for Riesz space and fuzzy random variables, Fuzzy logic, soft computing and computational intelligence. pp. 393–397. Springer-Verlag and Tsinghua University Press, Beijing (2005)
[13] Kuo W.-C., Labuschagne C.C.A., Watson B.A.: Convergence of Riesz space martingales. Indag. Math. 17, 271–283 (2006) · Zbl 1105.47034 · doi:10.1016/S0019-3577(06)80021-2
[14] Kuo W.-C., Labuschagne C.C.A., Watson B.A.: Ergodic theory and the strong law of large numbers on Riesz spaces. J. Math. Anal. Appl. 325, 422–437 (2007) · Zbl 1114.46015 · doi:10.1016/j.jmaa.2006.01.056
[15] Luxemburg W.A.J., Zaanen A.C.: Riesz Spaces I. North-Holland Publishing Company, Amsterdam (1971) · Zbl 0231.46014
[16] Meyer-Nieberg P.: Banach Lattices. Springer, Berlin (1991) · Zbl 0743.46015
[17] Schaefer H.H.: Banach lattices and positive operators. Springer, Berlin (1974) · Zbl 0296.47023
[18] Stoica Gh.: Martingales in vector lattices I. Bull. Math. Soc. Sci. Math. Roumanie 34(4), 357–362 (1990) · Zbl 0753.60012
[19] Stoica Gh.: Martingales in vector lattices II. Bull. Math. Soc. Sci. Math. Roumanie 35(1–2), 155–158 (1991) · Zbl 0752.46006
[20] Stoica, Gh.: Order convergence and decompositions of stochastic processes, An. Univ. Bucuresti Mat. Anii XLII–XLIII (1993–1994), 85–91 · Zbl 0817.60034
[21] Stoica Gh.: The structure of stochastic processes in normed vector lattices. Stud. Cerc. Mat. 46(4), 477–486 (1994) · Zbl 0815.60008
[22] Troitsky V.: Martingales in Banach lattices. Positivity 9, 437–456 (2005) · Zbl 1101.60028 · doi:10.1007/s11117-004-2769-1
[23] Vulikh, B.Z.: Introduction to the theory of partially ordered spaces, Translated from the Russian by L.F. Boron, Wolters-Noordhoff Scientific Publications Ltd. Groningen (1967) · Zbl 0186.44601
[24] Watson B.A.: An Ândo-Douglas type theorem in Riesz spaces with a conditional expectation. Positivity 13(3), 543–558 (2009) · Zbl 1186.47038 · doi:10.1007/s11117-008-2239-2
[25] Zaanen A.C.: Riesz spaces II. North-Holland, Amsterdam (1983) · Zbl 0519.46001
[26] Zaanen A.C.: Introduction to Operator theory in Riesz spaces. Springer, Berlin (1991) · Zbl 0878.47022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.