×

First eigenvalue monotonicity for the \(p\)-Laplace operator under the Ricci flow. (English) Zbl 1306.58003

In this paper, the author discusses the monotonicity of the first eigenvalue of the \(p\)-Laplace operator (\(p=2\)) along the Ricci flow on closed Riemannian manifolds. The main result is to prove that the first eigenvalue of the \(p\)-Laplace operator is nondecreasing along the Ricci flow under some different curvature assumptions. Otherwise, L. Ma [Ann. Global Anal. Geom. 29, No. 3, 287–292 (2006; Zbl 1099.53046)] considered the eigenvalues of the Laplace operator along the Ricci flow. He discussed the monotonicity of the eigenvalues of the Laplacian operator to the Ricci-Hamilton flow on a compact or a complete non-compact Riemannian manifold. He showed that the eigenvalue of the Lapacian operator on a compact domain associated with the evolving Ricci flow is non-decreasing provided the scalar curvature having a non-negative lower bound and Einstein tensor being not too negative. In this paper, the author also extends some parts of Ma’s results.

MSC:

58C40 Spectral theory; eigenvalue problems on manifolds
53C44 Geometric evolution equations (mean curvature flow, Ricci flow, etc.) (MSC2010)
58J50 Spectral problems; spectral geometry; scattering theory on manifolds

Citations:

Zbl 1099.53046
Full Text: DOI

References:

[1] Hamilton, R. S.: Three manifolds with positive Ricci curvature. J. Diff. Geom., 17(2), 255–306 (1982) · Zbl 0504.53034
[2] Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv: math.DG/0211159v1 (2002) · Zbl 1130.53001
[3] Cao, X. D.: Eigenvalues of ( + R/2) on manifolds with nonnegative curvature operator. Math. Ann., 337(2), 435–441 (2007) · Zbl 1105.53051 · doi:10.1007/s00208-006-0043-5
[4] Li, J. F.: Eigenvalues and energy functionals with monotonicity formulae under Ricci flow. Math. Ann., 338(4), 927–946 (2007) · Zbl 1127.53059 · doi:10.1007/s00208-007-0098-y
[5] Cao, X. D.: First eigenvalues of geometric operators under the Ricci flow. Proc. Amer. Math. Soc., 136, 4075–4078 (2008) · Zbl 1166.58007 · doi:10.1090/S0002-9939-08-09533-6
[6] Ma, L.: Eigenvalue monotonicity for the Ricci-Hamilton flow. Ann. Glob. Anal. Geom., 29, 287–292 (2006) · Zbl 1099.53046 · doi:10.1007/s10455-006-9018-8
[7] Grosjean, J. F.: p-Laplace operator and diameter of manifolds. Ann. Glob. Anal. Geom., 28, 257–270 (2005) · Zbl 1084.53036 · doi:10.1007/s10455-005-6637-4
[8] Kawai, S., Nakauchi, N.: The first eigenvalue of the p-Laplacian on a compact Riemannian manifold. Nonlin. Anal., 55, 33–46 (2003) · Zbl 1043.53031 · doi:10.1016/S0362-546X(03)00209-8
[9] Kotschwar, B., Ni, L.: Local gradient estimates of p-harmonic functions, 1/H-flow, and an entropy formula. Ann. Sci. Ec. Norm. Sup., 42(1), 1–36 (2009) · Zbl 1182.53060
[10] Ma, L., Chen, D. Z., Yang, Y.: Some results on subelliptic equations. Acta Mathematica Sinica, English Series, 22(6), 1965–1704 (2006) · Zbl 1134.35055 · doi:10.1007/s10114-005-0882-0
[11] Matei, A. M.: First eigenvalue for the p-Laplace operator. Nonlinear Anal., 39, 1051–1068 (2000) · Zbl 0948.35090 · doi:10.1016/S0362-546X(98)00266-1
[12] Serrin, J.: Local behavior of solutions of quasi-linear equations. Acta Math., 111, 247–302 (1964) · Zbl 0128.09101 · doi:10.1007/BF02391014
[13] Tolksdorff, P.: Regularity for a more general class of quasilinear ellptic equations. J. Diff. Equa., 51, 126–150 (1984) · Zbl 0488.35017 · doi:10.1016/0022-0396(84)90105-0
[14] Kato, T.: Perturbation Theory for Linear Operator, 2nd edtion, Springer, Berlin, Heidelberg, New York, Tokyo, 1984 · Zbl 0531.47014
[15] Kleiner, B., Lott, J.: Note on Perelman’s papers. Geometry and Topology, 12, 2587–2855 (2008) · Zbl 1204.53033 · doi:10.2140/gt.2008.12.2587
[16] Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press Harcourt Brace Jovanovich Publishers, New York, 1978 · Zbl 0401.47001
[17] Chow, B., Lu, P., Ni, L.: Hamilton’s Ricci Flow. Lectures in Contemporary Mathematics 3, American Mathematical Society, Providence, RI, 2006 · Zbl 1118.53001
[18] Ling, J.: A comparison theorem and a sharp bound via the Ricci flow. arXiv: math.DG/0710.2574v1 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.