×

Some results on subelliptic equations. (English) Zbl 1134.35055

Summary: We consider the principal eigenvalue problem for Hörmander’s Laplacian on \(\mathbb R^{n}\), and we find a comparison principle for such principal eigenvalues. We also study a related semi-linear sub-elliptic equation in the whole \(\mathbb R^{n}\) and prove that, under a suitable condition, we have infinitely many positive solutions of the problem.

MSC:

35J65 Nonlinear boundary value problems for linear elliptic equations
35H20 Subelliptic equations

References:

[1] Citti, G., Garofalo, N., Lanconelli, E.: Harnack inequality for sum of square of vector .elds plus a potential. Amer. J. Math., 115, 699–734 (1993) · Zbl 0795.35018 · doi:10.2307/2375077
[2] Gromov, M.: Carnot–Caratheodory spaces seen from within, 79–339, in Sub-Riemannian Geometry, Eds. A. Bellaiche, J. J. Risler, Birkhauser–Verlag, Basel, 1996 · Zbl 0864.53025
[3] Xu, C. J.: Regularity for quasilinear second order subelliptic equations. Comm. Pure Appl. Math., 45, 77–96 (1992) · Zbl 0827.35023 · doi:10.1002/cpa.3160450104
[4] Jerison, D., Lee, J. M.: The Yamabe problem on CR manifolds. J. Diff. Geom., 25, 167–97 (1987) · Zbl 0661.32026
[5] Jost, J., Xu, C. J.: Subelliptic harmonic maps. Trans. AMS, 350, 4633–49 (1998) · Zbl 0980.35051 · doi:10.1090/S0002-9947-98-01992-8
[6] Birindelli, I., Prajapat, J.: Nonlinear Liouville theorems in the Heisenberg group via the moving plane method. Comm. Partial Differential Equations, 24, 1875–1890 (1999) · Zbl 0944.35023 · doi:10.1080/03605309908821485
[7] Garofalo, N., Vassilev, D.: Symmetry properties of positive entire solutions of Yamabe-type equations on the groups of Heisenberg type. Duke Math. J., 106, 411–448 (2001) · Zbl 1012.35014 · doi:10.1215/S0012-7094-01-10631-5
[8] Lu, G., Wei, J.: On positive entire solutions to the Yamabe-type problem on the Heisenberg and strati.ed groups. Electron. Res. Announc. Amer. Math. Soc., 3, 83–89 (1997) · Zbl 0887.35052 · doi:10.1090/S1079-6762-97-00029-2
[9] Nagel, A., Stein, E. M., Wainger, S.: Balls and metrics de.ned by vector .elds I: basic properties. Acta Math., 155, 103–147 (1985) · Zbl 0578.32044 · doi:10.1007/BF02392539
[10] Hajlasz, P., Koskela, P.: Sobolev met Poincare. Mem. Amer. Math. Soc., 145, 688 (2000)
[11] Hormander, L.: Hypoelliptic second order di.erential equations. Acta Math., 119, 141–171 (1967) · Zbl 0156.10701 · doi:10.1007/BF02392081
[12] Bony, J. M.: Principe du maximum, inegalite de Harnack et unicite du probleme de Chauchy pour les operateurs elliptiques degeneres. Ann. Inst. Fourier, 19, 277–304 (1969) · Zbl 0176.09703
[13] Garofalo, N., Nhieu, D.: Isoperimetric and Sobolev inequalities for Carnot–Caratheodory spaces and existences of minimal surfaces. Comm. Pure Appl. Math., 49, 1084–1144 (1996) · Zbl 0880.35032 · doi:10.1002/(SICI)1097-0312(199610)49:10<1081::AID-CPA3>3.0.CO;2-A
[14] Garofalo, N.: Unique continuation for the square of vector fields plus a potential. J. Diff. Equations, 104, 117–146 (1993) · Zbl 0788.35051 · doi:10.1006/jdeq.1993.1065
[15] Fischer-Colbrie, D., Schoen, R.: The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature. Comm. Pure Appl. Math., 33, 199–211 (1980) · Zbl 0439.53060 · doi:10.1002/cpa.3160330206
[16] Liu, W. A., Lu, G.: Viscosity solutions of monotonous functional parabolic PDE. Acta Mathematica Sinica, English Series, 20(4), 739–748 (2004) · Zbl 1078.35130 · doi:10.1007/s10114-003-0241-y
[17] Gilbarg, D., Trudinger, N. S.: Elliptic partial differential equations of second order, Springer-Verlag, Berlin, 1977 · Zbl 0361.35003
[18] Berysticki, H., Nirenberg, L., Varadhan, S. R. S.: Principal eigenvalue and maximum principle for second order ellptic operators in general domains. Comm. Pure Appl. Math., 47, 47–94 (1994) · Zbl 0806.35129 · doi:10.1002/cpa.3160470105
[19] Jin, Z. R.: Principal eigenvalues with inde.nite weight functions. Trans. AMS, 349, 1945–1959 (1997) · Zbl 0877.35083 · doi:10.1090/S0002-9947-97-01797-2
[20] Birindelli, I., Capuzzo Dolcetta, I., Curtri, A.: Infinite semi-linear equations on the Heisenberg Group: a priori bounds and existence. Comm. Partial Differential Equations, 23, 1123–1157 (1998) · Zbl 0965.35019 · doi:10.1080/03605309808821381
[21] Lin, F. H.: On the elliptic equation –a ij (x)j u)+k(x)u – K(x)u p = 0. Proc. AMS, 95, 219–226 (1985) · Zbl 0584.35031
[22] Ma, L.: Mountain pass on a closed convex set. J. Math. Anal. and Applications, 205, 531–536 (1997) · Zbl 0895.58055 · doi:10.1006/jmaa.1997.5227
[23] Du, Y., Ma, L.: Logistic type equations on R N by a squeezing method involving boundary blow-up solutions. Journal LMS, 64, 107–124 (2001) · Zbl 1018.35045
[24] Ni, W. M.: On the elliptic equation {\(\Delta\)}u + K(x)u (N+2)/(n-2) = 0, its generalizations, and applications in Geometry. Indiana University Math. J., 31, 493–529 (1982) · Zbl 0496.35036 · doi:10.1512/iumj.1982.31.31040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.