×

A matrix recurrence for systems of Clifford algebra-valued orthogonal polynomials. (English) Zbl 1305.33028

Summary: Recently, the authors developed a matrix approach to multivariate polynomial sequences by using methods of hypercomplex function theory [Comput. Methods Funct. Theory 12, No. 2, 371–391 (2012; Zbl 1272.30069)]. This paper deals with an extension of that approach to a recurrence relation for the construction of a complete system of orthogonal Clifford-algebra valued polynomials of arbitrary degree. At the same time the matrix approach sheds new light on results about systems of Clifford algebra-valued orthogonal polynomials obtained by Gürlebeck, Bock, Lávička, Delanghe et al. during the last five years. In fact, it allows to prove directly some intrinsic properties of the building blocks essential in the construction process, but not studied so far.

MSC:

33C65 Appell, Horn and Lauricella functions
15A66 Clifford algebras, spinors
30G35 Functions of hypercomplex variables and generalized variables

Citations:

Zbl 1272.30069

References:

[1] Appell P.: Sur une classe de polynômes. Ann. Sci. École Norm. Sup. 9(no. 2), 119-144 (1880) · JFM 12.0342.02
[2] Bock S, Gürlebeck K.: On a Generalized Appell System and Monogenic Power Series. Math. Methods Appl. Sci. 33(no. 4), 394-411 (2010) · Zbl 1195.30068
[3] S. Bock, K. Gürlebeck, Lávisčka, and Souček, V., Gelfand-Tetslin bases for spherical monogenics in dimension 3. Rev. Mat. Iberoam., 28 no. 4 (2012), 1165-1192. · Zbl 1253.30056
[4] F. Brackx, R. Delanghe, and F. Sommen, Clifford Analysis. Pitman, Boston- London-Melbourne, 1982. · Zbl 0707.30039
[5] Cação I, Gürlebeck K, Malonek H. R.: Special monogenic polynomials and L2-approximation. Adv. Appl. Clifford Algebr. 11, 47-60 (2001) · Zbl 1221.30100 · doi:10.1007/BF03219121
[6] I. Cação, Constructive Approximation by Monogenic polynomials. Ph.D thesis, Univ. Aveiro, 2004. · Zbl 1094.30050
[7] I. Cação, K. Gürlebeck, and S. Bock, Complete orthonormal systems of spherical monogenics - a constructive approach. In Methods of Complex and Clifford Analysis, Son LH, Tutschke W, Jain S (eds). SAS International Publications, 2004. · Zbl 1108.30037
[8] I. Cação, M. I. Falcão, and H. R. Malonek, Laguerre Derivative and Monogenic Laguerre Polynomials: An Operational Approach. Math. Comput. Model. 53 no. 5-6 (2011), 1084-1094. · Zbl 1217.33015
[9] I. Cação, M. I. Falcão, and H. R. Malonek, On Generalized Hypercomplex Laguerre-Type Exponentials and Applications. In Computational Science and Its Applications - ICCSA 2011, B. Murgante et al.(eds.), Lecture Notes in Computer Science, vol. 6784, Springer-Verlag, Berlin, Heidelberg, (2011), 271- 286. · Zbl 0204.38301
[10] Cação I, Falcão M. I, Malonek H. R.: Matrix representations of a basic polynomial sequence in arbitrary dimension. Comput. Methods Funct. Theory, 12(no. 2), 371-391 (2012) · Zbl 1272.30069 · doi:10.1007/BF03321833
[11] Cação I, Gürlebeck K, Bock S.: On derivatives of spherical monogenics. Complex Variables and Elliptic Equations, 51 no 8(11), 847-869 (2006) · Zbl 1105.30035 · doi:10.1080/17476930600689084
[12] I. Cação and H. R. Malonek, Remarks on some properties of monogenic polynomials, In Proceedings of ICNAAM 2006, Simos, T.E. et al. (eds.); Weinheim: Wiley-VCH., (2006) 596-599. · Zbl 1249.30136
[13] I. Cação and H. R. Malonek, On Complete Sets of Hypercomplex Appell Polynomials. In AIP Conference Proceedings, Simos, T.E. et al. (eds.) vol. 1048, 2008, 647-650. · Zbl 1221.30100
[14] Carlson B. C: Polynomials Satisfying a Binomial Theorem. J. Math. Anal. Appl. 32, 543-558 (1970) · Zbl 0204.38301 · doi:10.1016/0022-247X(70)90276-3
[15] R. Delanghe, F. Sommen, and Souček, V., Clifford algebra and spinor-valued functions. Kluwer Academic Publishers, Dordrecht, 1992. · Zbl 0747.53001
[16] Eelbode D.: Monogenic Appell sets as representations of the Heisenberg algebra. Adv. Appl. Clifford Algebra 22(no. 4), 1009-1023 (2012) · Zbl 1256.81059 · doi:10.1007/s00006-012-0330-z
[17] M. I. Falcão and H. R. Malonek, Generalized Exponentials Through Appell Sets in \[{\mathbb{R}^{n+1}}Rn+1\] and Bessel Functions. In AIP Conference Proceedings, Simos, T.E. et al. (eds.), vol. 936, 2007, 738-741. · Zbl 1152.33306
[18] J.E. Gilbert and M.A.M. Murray, Clifford algebras and Dirac operators in harmonic analysis. Cambridge University Press, Cambridge, 1991. · Zbl 0733.43001
[19] K. Gürlebeck and H. R. Malonek, A Hypercomplex Derivative of Monogenic Functions in \[{\mathbb{R}^{n+1}}Rn+1\] and Its Applications. Complex Variables Theory Appl. 39 (1999), 199-228. · Zbl 1019.30047
[20] K. Gürlebeck, K. Habetha, and W. Sprößig, Holomorphic Functions in the Plane and n-Dimensional Space. Translated from the 2006 German original. Birkhäuser Verlag, Basel, 2008, · Zbl 1132.30001
[21] Hahn W.: Über die Jacobischen Polynome und zwei verwandte Polynomklassen. Math. Z. 39, 634-638 (1935) · Zbl 0011.06202 · doi:10.1007/BF01201380
[22] Lávička R: Canonical Bases for sl(2, c)-Modules of Spherical Monogenics in Dimension 3. Archivum Mathematicum 46, 339-349 (2010) · Zbl 1249.30136
[23] Lávička R.: Complete Orthogonal Appell Systems for Spherical Monogenics. Complex Anal. Oper. Theory, 6, 477-489 (2012) · Zbl 1275.30022 · doi:10.1007/s11785-011-0200-z
[24] Malonek H. R.: A New Hypercomplex Structure of the Euclidean Space \[{\mathbb{R}^{n+1}}Rn+1\] and the Concept of Hypercomplex Differentiability. Complex Variables 14, 25-33 (1990) · Zbl 0707.30039 · doi:10.1080/17476939008814401
[25] H. R. Malonek, Selected Topics in Hypercomplex Function Theory. In Clifford Algebras and Potential Theory, 7, S.-L. Eriksson (ed.), University of Joensuu, (2004), 111-150. · Zbl 1071.30052
[26] H. R. Malonek and M. I. Falcão, Special Monogenic Polynomials-Properties and Applications. In AIP Conference Proceedings, Th. E. Simos et al. (eds.) vol. 936, (2007), 764-767. · Zbl 1152.30335
[27] Peña Peña D.: Shifted Appell Sequences in Clifford Analysis. Results. Math. 63, 1145-1157 (2013) · Zbl 1278.30054 · doi:10.1007/s00025-012-0259-5
[28] E. Rainville, Special Functions, Macmillan, New York, 1965. · Zbl 0231.33001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.