×

Stability on time-dependent domains. (English) Zbl 1302.70057

Summary: We explore the key differences in the stability picture between extended systems on time-fixed and time-dependent spatial domains. As a paradigm, we take the complex Swift-Hohenberg equation, which is the simplest nonlinear model with a finite critical wavenumber, and use it to study dynamic pattern formation and evolution on time-dependent spatial domains in translationally invariant systems, i.e., when dilution effects are absent. In particular, we discuss the effects of a time-dependent domain on the stability of spatially homogeneous and spatially periodic base states, and explore its effects on the Eckhaus instability of periodic states. New equations describing the nonlinear evolution of the pattern wavenumber on time-dependent domains are derived, and the results compared with those on fixed domains. Pattern coarsening on time-dependent domains is contrasted with that on fixed domains with the help of the Cahn-Hilliard equation extended here to time-dependent domains. Parallel results for the evolution of the Benjamin-Feir instability on time-dependent domains are also given.

MSC:

70K50 Bifurcations and instability for nonlinear problems in mechanics
35R35 Free boundary problems for PDEs
Full Text: DOI

References:

[1] Armaou, A., Christofides, P.D.: Finite-dimensional control of nonlinear parabolic PDE systems with time-dependent spatial domains using empirical eigenfunctions. Int. J. Appl. Math. Comput. Sci. 11, 287-317 (2001) · Zbl 0979.93053
[2] Armbruster, D., Guckenheimer, J., Holmes, P.: Heteroclinic cycles and modulated traveling waves in systems with O(2) symmetry. Physica D 29, 257-282 (1988) · Zbl 0634.34027 · doi:10.1016/0167-2789(88)90032-2
[3] Aronson, D.G.: The porous medium equation. In: Fasano, A., Primicerio, M. (eds.) In: Nonlinear Diffusion Problems. Lecture Notes in Math., Vol. 1224, pp. 12-46. Springer, New York (1986) · Zbl 0626.76097
[4] Baer, S.M., Erneux, T., Rinzel, J.: The slow passage through a Hopf bifurcation: delay, memory effects and resonance. SIAM J. Appl. Math. 49, 55-71 (1989) · Zbl 0683.34039 · doi:10.1137/0149003
[5] Bender, C.M., Orszag, S.A.: Advanced Mathematical Methods for Scientists and Engineers: Asymptotic Methods and Perturbation Theory. Springer, New York (1999) · Zbl 0938.34001 · doi:10.1007/978-1-4757-3069-2
[6] Benjamin, T.B., Feir, J.E.: The disintegration of wave trains on deep water. I: Theory. J. Fluid Mech. 12, 417-430 (1967) · Zbl 0144.47101 · doi:10.1017/S002211206700045X
[7] Benoit, E. (ed.): Dynamic Bifurcations. Springer, Berlin (1991) · Zbl 0756.34042
[8] Bergeon, A., Burke, J., Knobloch, E., Mercader, I.: Eckhaus instability and homoclinic snaking. Phys. Rev. E 78, 046201 (2008) · doi:10.1103/PhysRevE.78.046201
[9] Betyaev, S.K.: Hydrodynamics: problems and paradoxes. Phys. Uspekhi 38, 287-316 (1995) · doi:10.1070/PU1995v038n03ABEH000076
[10] Borgnis, F., Papas, C.H.: Electromagnetic Waveguides and Resonators. Lecture Notes. California Institute of Technology, Pasadena, CA (1972)
[11] Burns, J.A., Kang, S.: A control problem for Burgers equation with bounded input/output. Nonlinear Dyn. 2, 235-262 (1991) · doi:10.1007/BF00045296
[12] Chambolle, A., Santosa, F.: Control of the wave equation by time-dependent coefficient. ESAIM 8, 375-392 (2002) · Zbl 1073.35032 · doi:10.1051/cocv:2002029
[13] Cooper, J.: Parametric resonance in wave equations with a time-periodic potential. SIAM J. Math. Anal. 31, 821-835 (2000) · Zbl 0985.34076 · doi:10.1137/S0036141098340703
[14] Courant, R., Hilbert, D.: Methods of Mathematical Physics. Wiley-VCH, Oregon (1989) · Zbl 0729.35001 · doi:10.1002/9783527617234
[15] Crampin, E.J., Gaffney, E.A., Maini, P.K.: Reaction and diffusion on growing domains: scenarios for robust pattern formation. Bull. Math. Biol. 61, 1093-1120 (1999) · Zbl 1323.92028 · doi:10.1006/bulm.1999.0131
[16] Dangelmayr, G.: Steady-state mode interactions in the presence of O(2) symmetry. Dyn. Stab. Syst. 1, 159-185 (1986) · Zbl 0661.58022 · doi:10.1080/02681118608806011
[17] Davis, S.H.: The stability of time-periodic flows. Ann. Rev. Fluid Mech. 8, 57-74 (1976) · doi:10.1146/annurev.fl.08.010176.000421
[18] Dittrich, J., Duclos, P., Gonzalez, N.: Stability and instability of the wave equation solutions in a pulsating domain. Rev. Math. Phys. 10, 925-962 (1998) · Zbl 0934.35084 · doi:10.1142/S0129055X98000306
[19] Dodonov, V.V., Klimov, A.B., Nikonov, D.E.: Quantum particle in a box with moving walls. J. Math. Phys. 34, 3391-3404 (1993) · Zbl 0780.35086 · doi:10.1063/1.530083
[20] Dresner, L.: Similarity Solutions of Nonlinear Partial Differential Equations. Pitman, Boston, Mass (1983) · Zbl 0526.35002
[21] Eckhaus, W.: Studies in Non-linear Stability Theory. Springer, New York (1965) · Zbl 0125.33101 · doi:10.1007/978-3-642-88317-0
[22] Eckhaus, W.: Relaxation oscillations, including a standard chase on ducks. In: Asymptotic Analysis II, Lecture Notes in Math., Vol. 985, pp. 449-494. Springer, Berlin (1983) · Zbl 0509.34037
[23] Farrell, B.F., Ioannou, P.J.: Generalized stability theory. Part II: Nonautonomous operators. J. Atmos. Sci. 53, 2041-2053 (1996) · doi:10.1175/1520-0469(1996)053<2041:GSTPIN>2.0.CO;2
[24] Farrell, B.F., Ioannou, P.J.: Perturbation growth and structure in time-dependent flows. J. Atmos. Sci. 56, 3622-3639 (1999) · doi:10.1175/1520-0469(1999)056<3622:PGASIT>2.0.CO;2
[25] Fernández, M.A., Tallec, P.L.: Linear stability analysis in fluid-structure interaction with transpiration. Part I: Formulation and mathematical analysis. Comp. Meth. Appl. Mech. Engr. 192, 4805-4835 (2003) · Zbl 1054.74016
[26] Ferreira, J., Benabidallah, R., Muñoz Rivera, J.E.: Asymptotic behaviour for the nonlinear beam equation in a time-dependent domain. Rend. Mat. Appl. 19, 177-193 (1999) · Zbl 0943.35048
[27] Floquet, M.G.: Sur les équations différentielles linéaires à coefficients périodiques. Ann. École Norm. Sup. 12, 47-88 (1883) · JFM 15.0279.01
[28] Fujita, H., Sauer, N.: On existence of weak solutions of the Navier-Stokes equations in regions with moving boundaries. J. Fac. Sci. Univ. Tokyo Sec. IA 17, 403-420 (1970) · Zbl 0206.39702
[29] Garcia, C.R., Minzoni, A.A.: An asymptotic solution for the wave equation in a time-dependent domain. SIAM Rev. 23, 1-9 (1981) · Zbl 0501.35048
[30] Gelens, L., Knobloch, E.: Coarsening and frozen faceted structures in the supercritical complex Swift-Hohenberg equation. Eur. Phys. J. D 59, 23-36 (2010) · doi:10.1140/epjd/e2010-00132-6
[31] Gjorgjieva, J., Jacobsen, J.: Turing patterns on growing spheres: the exponential case. In: Proceedings of the 6th AIMS International Conference, Poitiers, France. Discrete and Continuous Dynamical Systems Supplement, pp. 436-445 (2007) · Zbl 1163.35420
[32] Guckenheimer, J.: Bifurcations of relaxation oscillations. In: Normal Forms, Bifurcations and Finiteness Problems in Differential Equations, pp. 295-316. Kluwer, Dordrecht, The Netherlands (2004) · Zbl 0760.35038
[33] Hartong-Redden, R., Krechetnikov, R.: Pattern identification in systems with S(1) symmetry. Phys. Rev. E 84, 056212 (2011) · doi:10.1103/PhysRevE.84.056212
[34] Heaslet, M.A., Alksne, A.: Diffusion from a fixed surface with a concentration-dependent coefficient. J. Soc. Ind. Appl. Math. 9, 584-596 (1961) · Zbl 0107.42502 · doi:10.1137/0109049
[35] Hetzer, G., Madzvamuse, A., Shen, W.: Characterization of Turing diffusion-driven instability on evolving domains. Discr. Contin. Dyn. Syst. 32, 3975-4000 (2012) · Zbl 1252.35049 · doi:10.3934/dcds.2012.32.3975
[36] Homsy, G.M.: Global stability of time-dependent flows: impulsively heated or cooled fluid layers. J. Fluid Mech. 60, 129-139 (1973) · Zbl 0262.76027 · doi:10.1017/S002211207300008X
[37] Hoyle, R.B.: Pattern Formation: An Introduction to Methods. Cambridge University Press, Cambridge (2006) · Zbl 1087.00001 · doi:10.1017/CBO9780511616051
[38] King, J.R.: Exact results for the nonlinear diffusion equations. J. Phys. A 24, 5721-5745 (1991) · Zbl 0760.35038 · doi:10.1088/0305-4470/24/24/009
[39] Knobloch, E.: On the decay of cosmic turbulence. Astrophys. J. 221, 395-398 (1978) · doi:10.1086/156039
[40] Knobloch, E.: Spatially localized structures in dissipative systems: open problems. Nonlinearity 21, T45-T60 (2008) · Zbl 1139.35002 · doi:10.1088/0951-7715/21/4/T02
[41] Knobloch, E., Merryfield, W.J.: Enhancement of diffusive transport in oscillatory flows. Astrophys. J. 401, 196-205 (1992) · doi:10.1086/172052
[42] Knobloch, E., Mahalov, A., Marsden, J.E.: Normal forms for three-dimensional parametric instabilities in ideal hydrodynamics. Physica D 73, 49-81 (1994) · Zbl 0814.76048 · doi:10.1016/0167-2789(94)90225-9
[43] Kondo, S., Asai, R.: A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus. Nature 376, 765-768 (1995) · doi:10.1038/376765a0
[44] Kramer, L., Zimmermann, W.: On the Eckhaus instability for spatially periodic patterns. Physica D 16, 221-232 (1985) · Zbl 0589.58011 · doi:10.1016/0167-2789(85)90059-4
[45] Krechetnikov, R.: A linear stability theory on time-invariant and time-dependent spatial domains with symmetry: the drop splash problem. Dyn. PDE 8, 47-67 (2011) · Zbl 1296.76050
[46] Krechetnikov, R., Homsy, G.M.: Crown-forming instability phenomena in the drop splash problem. J. Colloid Interface Sci. 331, 555-559 (2009) · doi:10.1016/j.jcis.2008.11.079
[47] Krstic, M.: On global stabilization of Burgers equation by boundary control. Syst. Control Lett. 37, 123-141 (1999) · Zbl 1074.93552
[48] Krstic, M., Magnis, L., Vazquez, R.:. Nonlinear control of the Burgers PDE. Part I: Full-state stabilization. In: Proceedings of the American Control Conference, pp. 285-290 (2008) · Zbl 1367.93519
[49] Lamb, H.: Hydrodynamics. Cambridge University Press, Cambridge (1994) · JFM 26.0868.02
[50] Lee, K.: A mixed problem for hyperbolic equations with time-dependent domain. J. Math. Anal. Appl. 16, 445-471 (1966) · Zbl 0171.07501 · doi:10.1016/0022-247X(66)90156-9
[51] Lega, J., Moloney, J.V., Newell, A.C.: Swift-Hohenberg equation for lasers. Phys. Rev. Lett. 73, 2978-2981 (1994) · doi:10.1103/PhysRevLett.73.2978
[52] Lega, J., Moloney, J.V., Newell, A.C.: Universal description of laser dynamics near threshold. Physica D 83, 478-498 (1995) · Zbl 0884.35009 · doi:10.1016/0167-2789(95)00046-7
[53] Lighthill, M.J.: Waves in Fluids. Cambridge University Press, Cambridge (1978) · Zbl 0375.76001
[54] Lions, J.L.: Singular perturbations and some non-linear boundary value problems. MRC Technical Summary Report 421, Univ. Wisconsin, 1963. · Zbl 0729.00007
[55] Lobry, C.: Dynamic bifurcations. In: Dynamic Bifurcations, Lecture Notes in Math., Vol. 1493, pp. 1-13. Springer, New York (1991) · Zbl 0875.34011
[56] Lythe, G.D.: Domain formation in transitions with noise and a time-dependent bifurcation parameter. Phys. Rev. E 53, R5572-R5575 (1996) · doi:10.1103/PhysRevE.53.R4271
[57] Ma, Y.-P., Knobloch, E.: Depinning, front motion, and phase slips. Chaos 22, 033101 (2012) · Zbl 1319.35251
[58] Ma, Y.-P., Burke, J., Knobloch, E.: Defect-mediated snaking: a new growth mechanism for localized structures. Physica D 239, 1867-1883 (2010) · Zbl 1213.37033 · doi:10.1016/j.physd.2010.06.014
[59] Madzvamuse, A., Maini, P.K., Wathen, A.J.: A moving grid finite element method applied to a model biological pattern generator. J. Comp. Phys. 190, 478-500 (2003) · Zbl 1029.65113 · doi:10.1016/S0021-9991(03)00294-8
[60] Madzvamuse, A., Gaffney, E.A., Maini, P.K.: Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains. J. Math. Biol. 61, 133-164 (2010) · Zbl 1202.92010 · doi:10.1007/s00285-009-0293-4
[61] Maesschalck, P.D., Popovic, N., Kaper, T.J.: Canards and bifurcation delays of spatially homogeneous and inhomogeneous types in reaction-diffusion equations. Adv. Diff. Equat. 14, 943-962 (2009) · Zbl 1184.35042
[62] Mandel, P., Erneux, T.: The slow passage through a steady bifurcation: delay and memory effects. J. Stat. Phys. 48, 1059-1070 (1987) · doi:10.1007/BF01009533
[63] Miyakawa, T., Teramoto, Y.: Existence and periodicity of weak solutions of the Navier-Stokes equations in a time dependent domain. Hiroshima Math. J. 12, 513-528 (1982) · Zbl 0526.35068
[64] Neishtadt, A.I.: Persistence of stability loss for dynamical bifurcations. I. Diff. Equat. 23, 1385-1390 (1987) · Zbl 0716.34064
[65] Neishtadt, A.I.: Persistence of stability loss for dynamical bifurcations. II. Diff. Equat. 24, 171-176 (1988) · Zbl 0677.58035
[66] Neishtadt, A.I.: On stability loss delay for dynamical bifurcations. Discrete Continuous Dyn. Syst. Ser. S 2, 897-909 (2009) · Zbl 1203.34083
[67] Neville, A.A., Matthews, P.C., Byrne, H.M.: Interactions between pattern formation and domain growth. Bull. Math. Biol. 68, 1975-2003 (2006) · Zbl 1296.92092 · doi:10.1007/s11538-006-9060-5
[68] Painter, K.J., Maini, P.K., Othmer, H.G.: Stripe formation in juvenile Pomacanthus explained by a generalized Turing mechanism with chemotaxis. Proc. Natl. Acad. Sci. USA 96, 5549-5554 (1999) · Zbl 0262.76027
[69] Pattle, R.E.: Diffusion from an instantaneous point source with a concentration-dependent coefficient. Quart. J. Mech. Appl. Math. 12, 407-409 (1959) · Zbl 0119.30505 · doi:10.1093/qjmam/12.4.407
[70] Raitt, D., Riecke, H.: Domain structures in fourth-order phase and Ginzburg-Landau equations. Physica D 82, 79-94 (1995) · Zbl 0899.76301 · doi:10.1016/0167-2789(94)00218-F
[71] Riecke, H.: Localized structures in pattern-forming systems. IMA Volumes in Mathematics and its Applications 115, 215-229 (1999) · Zbl 0959.35089
[72] Rogak, E.D.: A mixed problem for the wave equation in a time dependent domain. Arch. Rat. Mech. Anal. 22, 24-26 (1966) · Zbl 0149.31003 · doi:10.1007/BF00281243
[73] Schneider, T.M., Gibson, J.F., Burke, J.: Snakes and ladders: Localized solutions of plane Couette flow. Phys. Rev. Lett. 104, 104501 (2010) · doi:10.1103/PhysRevLett.104.104501
[74] Serrin, J.: On the stability of viscous fluid motion. Arch. Rat. Mech. Anal. 3, 1-13 (1959) · Zbl 0086.20001 · doi:10.1007/BF00284160
[75] Shahinpoor, M., Ahmadi, G.: Stability of Cosserat fluid motions. Arch. Rat. Mech. Anal. 47, 188-194 (1972) · Zbl 0248.76004 · doi:10.1007/BF00250625
[76] Shampine, L.F.: Concentration-dependent diffusion. II. Singular problems. Quart. Appl. Math. 31, 287-293 (1973) · Zbl 0278.76036
[77] Teramoto, Y.: On the stability of periodic solutions of the Navier-Stokes equations in a noncylindrical domain. Hiroshima Math. J. 13, 607-625 (1983) · Zbl 0551.35071
[78] Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37-72 (1952) · Zbl 1403.92034 · doi:10.1098/rstb.1952.0012
[79] Ueda, H.: A remark on parametric resonance for wave equations with a time periodic coefficient. Proc. Japan Acad. A 87, 128-129 (2011) · Zbl 1235.35028 · doi:10.3792/pjaa.87.128
[80] Ueda, K.-I., Nishiura, Y.: A mathematical mechanism for instabilities in stripe formation on growing domains. Physica D 241, 37-59 (2012) · Zbl 1228.92010 · doi:10.1016/j.physd.2011.09.016
[81] Vanneste, J., Wirosoetisno, D.: Two-dimensional Euler flows in slowly deforming domains. Physica D 237, 774-799 (2008) · Zbl 1210.76049 · doi:10.1016/j.physd.2007.10.017
[82] Vasil, G.M., Proctor, M.R.E.: Dynamic bifurcations and pattern formation in melting-boundary convection. J. Fluid Mech. 686, 77-108 (2011) · Zbl 1241.76190 · doi:10.1017/jfm.2011.284
[83] Vázquez, J.L.: Porous Medium Equation. Oxford Science Publications, Oxford (2006) · Zbl 1113.35004 · doi:10.1093/acprof:oso/9780198569039.001.0001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.