×

Canonical extensions and profinite completions of semilattices and lattices. (English) Zbl 1301.06022

Summary: Canonical extensions of (bounded) lattices have been extensively studied, and the basic existence and uniqueness theorems for these have been extended to general posets. This paper focuses on the intermediate class \(\mathbf{\mathcal{S}}_{\wedge}\) of (unital) meet semilattices. Any \(\mathbf S \in \mathbf{\mathcal{S}}_{\wedge}\) embeds into the algebraic closure system Filt(Filt(\(\mathbf S\))). This iterated filter completion, denoted Filt\(^{2}(\mathbf S)\), is a compact and \(\vee\wedge\)-dense extension of \(\mathbf S\). The complete meet-subsemilattice \(\mathbf S^{\delta}\) of Filt\(^{2}\)(\(\mathbf S\)) consisting of those elements which satisfy the condition of \(\wedge\vee\)-density is shown to provide a realisation of the canonical extension of \(\mathbf S\). The easy validation of the construction is independent of the theory of Galois connections. Canonical extensions of bounded lattices are brought within this framework by considering semilattice reducts. Any \(\mathbf S\) in \(\mathbf{\mathcal{S}}_{\wedge}\) has a profinite completion, Pro\(_{\mathbf{\mathcal{S}}_{\wedge}}(\mathbf S)\). Via the duality theory available for semilattices, Pro\(_{\mathbf{\mathcal{S}}_{\wedge}}(\mathbf S)\) can be identified with Filt\(^{2}\)(\(\mathbf S\)), or, if an abstract approach is adopted, with \(\mathbb F_{\sqcup}(\mathbb F_{\sqcap}(\mathbf S))\), the free join completion of the free meet completion of \(\mathbf S\). Lifting of semilattice morphisms can be considered in any of these settings. This leads, \(inter\) \(alia\), to a very transparent proof that a homomorphism between bounded lattices lifts to a complete lattice homomorphism between the canonical extensions. Finally, we demonstrate, with examples, that the profinite completion of \(\mathbf S\), for \(\mathbf S \in \mathbf{\mathcal{S}}_{\wedge}\), need not be a canonical extension. This contrasts with the situation for the variety of bounded distributive lattices, within which profinite completion and canonical extension coincide.

MSC:

06B23 Complete lattices, completions
06A12 Semilattices
Full Text: DOI

References:

[1] Bezhanishvili, G., Gehrke, M., Mines, R., Morandi, P.J.: Profinite completions and canonical extensions of Heyting algebras. Order 23, 143-161 (2006) · Zbl 1112.06008 · doi:10.1007/s11083-006-9037-x
[2] Busaniche, M., Cabrer, L.M.: Canonicity in subvarieties of BL-algebras. Algebra Univ. 62, 375-397 (2009) · Zbl 1200.03049 · doi:10.1007/s00012-010-0055-6
[3] Clark, D.M., Davey, B.A.: Natural Dualities for the Working Algebraist. Cambridge University Press (1998) · Zbl 0910.08001
[4] Davey, B.A., Gouveia, M.J., Haviar, M., Priestley, H.A.: Natural extensions and profinite completions of algebras. Algebra Univ. 66, 205-241 (2011) · Zbl 1232.08006 · doi:10.1007/s00012-011-0155-y
[5] Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press (2002) · Zbl 1002.06001
[6] Dunn, J.M., Gehrke, M., Palmigiano, A.: Canonical extensions and relational completeness of some substructural logics. J. Symbolic Logic 70, 713-740 (2005) · Zbl 1101.03021 · doi:10.2178/jsl/1122038911
[7] Erné, M.: Adjunctions and Galois connections: origins, history and development. In: Deneke, K., Erné, M., Wismath, S.L. (eds.) Galois Connections and Applications, Mathematics and its Applications, vol. 565, pp. 1-138. Kluwer Academic Publishers (2004) · Zbl 1067.06003
[8] Gehrke, M.: Canonical extensions, Esakia spaces, and universal models. In: Bezhanishvili, G. (ed.) Leo Esakia on duality in modal and intuitionistic logics. Trends in Logic (Outstanding Contributions subseries), volume dedicated to the achievements of Leo Esakia. Available online (preprint), see http://www.liafa.univ-paris-diderot.fr/ mgehrke/Ge12.pdf. Accessed 14 June 2013 · Zbl 1232.08006
[9] Gehrke, M., Harding, J.: Bounded lattice expansions. J. Algebra 55, 345-371 (2001) · Zbl 0988.06003 · doi:10.1006/jabr.2000.8622
[10] Gehrke, M., Jansana, R., Palmigiano, A.: Δ1-completions of a poset. Order 30(1), 39-64 (2013) · Zbl 1317.06002 · doi:10.1007/s11083-011-9226-0
[11] Gehrke, M., Jónsson, B.: Bounded distributive lattices with operators. Math. Japonica 40, 207-215 (1994) · Zbl 0855.06009
[12] Gehrke, M., Priestley, H.A.: Canonical extensions and completions of posets and lattices. Rep. Math. Logic 43, 133-152 (2008) · Zbl 1147.06005
[13] Gehrke, M., Vosmaer, J.: A view of canonical extensions. In: Bezhanishvili, N., Löbner, S., Schwabe, K., Spada, L. (eds.) Logic, Language and Computation (Proceedings of the Eighth International Tbilisi Symposium TbiLLC09, Lecture Notes in Artificial Intelligence). Lecture Notes in Comput. Sci. 6618, 77-100 (2011) · Zbl 1341.03095
[14] Gierz, G., Hofmann, K., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: A Compendium of Continuous Lattices. Springer-Verlag (1980) · Zbl 0452.06001
[15] Gouveia, M., Priestley, H.A.: Canonical extensions of distributive lattices and the profinite completions of their semilattice reducts. Houston J. Math. Available online (preprint), see http://webpages.fc.ul.pt/ mjgouveia/s2.pdf. Accessed 14 June 2013 · Zbl 1312.06004
[16] Harding, J.: Canonical completions of lattices and ortholattices. Tatra Mt. Math. Publ. 15, 85-96 (1998) · Zbl 0939.06004
[17] Harding, J.: On profinite completions and canonical extensions. Algebra Univ. 55, 293-296 (2006) · Zbl 1134.06004 · doi:10.1007/s00012-006-1969-x
[18] Hofmann, K.H., Mislove, M., Stralka, A.R.: The Pontryagin duality of compact 0-dimensional semilattices and its applications. Lecture Notes in Mathematics, vol. 396. Springer-Verlag (1974) · Zbl 0281.06004
[19] Moshier, M.A., Jipsen, P.: Topological duality and lattice expansions, Part I: a topological construction of canonical extensions. Algebra Univ. Available online (preprint), see http://math.chapman.edu/ jipsen/preprints/JipsenMoshier20120412Part1.pdf. Accessed 14 June 2013 · Zbl 1307.06002
[20] Urquhart, A.: A topological representation theory for lattices. Algebra Univ. 8, 45-58 (1978) · Zbl 0382.06010 · doi:10.1007/BF02485369
[21] Walker, R.C.: The Stone-Čech Compactification. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 83, Springer-Verlag (1974) · Zbl 0292.54001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.