×

Natural extensions and profinite completions of algebras. (English) Zbl 1232.08006

A profinite completion of a given algebra \(A\) is defined to be the inverse limit algebra formed from finite quotient algebras of \(A\) by congruences of finite index, where the indexing set is the set of congruences of finite index and ordering is reverse inclusion. The paper investigates profinite completions of residually finite algebras drawing on ideas of natural dualities. Given a class \(V=\mathrm{ISP}(M)\), where \(M\) is a set of finite algebras, it is shown that each \(A \in V\) embeds as a topologically dense subalgebra of a topological algebra which is a natural extension of \(A\) and this algebra is isomorphic, topologically and algebraically, to the profinite completion of \(A\). It is shown how the natural extensions can be described as families of relation-preserving maps. For an algebra of a finitely generated variety of lattice-based algebras, the natural extension provides a realization of the canonical extension. The paper concludes with an exhaustive survey of classes of algebras to which the main theorem do, or do not, apply.

MSC:

08B25 Products, amalgamated products, and other kinds of limits and colimits
06D50 Lattices and duality
08C15 Quasivarieties
08C20 Natural dualities for classes of algebras
18A30 Limits and colimits (products, sums, directed limits, pushouts, fiber products, equalizers, kernels, ends and coends, etc.)
Full Text: DOI

References:

[1] Baldwin J.T.: The number of subdirectly irreducible algebras in a variety II. Algebra Universalis 11, 1–6 (1980) · Zbl 0469.08004 · doi:10.1007/BF02483077
[2] Baldwin J.T., Berman J.: The number of subdirectly irreducible algebras in a variety. Algebra Universalis 5, 379–389 (1975) · Zbl 0348.08002 · doi:10.1007/BF02485271
[3] Banaschewski, B.: On profinite universal algebras. In: Proc. Third Prague Topological Sympos. (Prague, 1971), 51–62. Academia, Prague (1972)
[4] Bezhanishvili G.: Locally finite varieties. Algebra Universalis 46, 531–548 (2001) · Zbl 1064.08007 · doi:10.1007/PL00000358
[5] Bezhanishvili G., Grigolia R.: Locally finite varieties of Heyting algebras. Algebra Universalis 54, 465–473 (2005) · Zbl 1094.06009 · doi:10.1007/s00012-005-1958-5
[6] Blok, W., Pigozzi, D.: On the structure of varieties with equationally definable principal congruences, I, II and III. Algebra Universalis 15, 195–227 (1982), 18, 334–379 (1984) and 32, 545–608 (1994) · Zbl 0512.08002
[7] Bonato, A.C.J.: On Residually Small Varieties. Masters’ thesis, University of Waterloo, Ontario, Canada (1994)
[8] Burris, S.N., Sankappanavar, H.P.: A course in universal algebra. Graduate texts in Mathematics, vol. 78. Springer-Verlag (1981) Free download at http://www.math.waterloo.ca/\(\sim\)snburris · Zbl 0478.08001
[9] Clark D.M., Davey B.A.: Natural Dualities for the Working Algebraist. Cambridge University Press, Cambridge (1998) · Zbl 0910.08001
[10] Clark D.M., Davey B.A., Freese R.S., Jackson M.: Standard topological algebras: syntactic and principal congruences and profiniteness. Algebra Universalis 52, 343–376 (2004) · Zbl 1088.08006 · doi:10.1007/s00012-004-1917-6
[11] Clark D.M., Davey B.A., Jackson M., Pitkethly J.G.: The axiomatizability of topological prevarieties. Adv. Math. 218, 1604–1653 (2008) · Zbl 1148.08003 · doi:10.1016/j.aim.2008.03.020
[12] Clark D.M., Davey B.A., Pitkethly J.G., Rifqui D.L.: Flat unars: the primal, the semi-primal and the dualisable. Algebra Universalis 63, 303–329 (2010) · Zbl 1207.08001 · doi:10.1007/s00012-010-0080-5
[13] Davey B.A.: On the lattice of subvarieties. Houston J. Math. 5, 183–192 (1979) · Zbl 0396.08008
[14] Davey B.A.: Monotone clones and congruence modularity. Order 6, 389–400 (1979) · Zbl 0711.08008 · doi:10.1007/BF00346133
[15] Davey, B.A., Gouveia, M.J., Haviar, M., Priestley, H.A.: Multisorted dualisability: change of base. Algebra Universalis (to appear) · Zbl 1235.08004
[16] Davey B.A., Heindorf L., McKenzie R.: Near unanimity: an obstacle to general duality theory. Algebra Universalis 33, 428–439 (1995) · Zbl 0824.08007 · doi:10.1007/BF01190710
[17] Davey B.A., Haviar M., Priestley H.A.: The syntax and semantics of entailment in duality theory. J. Symbolic Logic 60, 1087–1114 (1995) · Zbl 0845.08006 · doi:10.2307/2275875
[18] Davey B.A., Haviar M., Priestley H.A.: Boolean topological distributive lattices and canonical extensions. Appl. Categ. Structures 15, 225–241 (2007) · Zbl 1122.06004 · doi:10.1007/s10485-007-9090-7
[19] Davey B.A., Jackson M., Pitkethly J.G., Talukder M.R.: Natural dualities for semilattice-based algebras. Algebra Universalis 57, 463–490 (2007) · Zbl 1133.08003 · doi:10.1007/s00012-007-2061-x
[20] Davey B.A., Pitkethly J.G.: Dualisability of p-semilattices. Algebra Universalis 45, 149–153 (2001) · Zbl 0982.06005
[21] Davey B.A., Pitkethly J.G., Willard R.: Dualisability versus residual character: a theorem and a counterexample. Annals Pure Appl. Algebra 210, 423–435 (2007) · Zbl 1119.08001 · doi:10.1016/j.jpaa.2006.10.001
[22] Davey B.A., Priestley H.A.: Generalized piggyback dualities and applications to Ockham algebras. Houston J. Math. 13, 151–197 (1987) · Zbl 0692.08012
[23] Davey B.A., Quackenbush R.W., Schweigert D.: Monotone clones and the varieties they determine. Order 7, 145–167 (1990) · Zbl 0734.08001 · doi:10.1007/BF00383763
[24] Davey, B.A., Werner, H.: Dualities and equivalences for varieties of algebras. In: Contributions to Lattice Theory Szeged, 1980 (A.P. Huhn and E.T. Schmidt, eds). Coll. Math. Soc. János Bolyai 33, pp.101–275. North-Holland, Amsterdam (1983)
[25] Di Nola A., Niederkorn P.: Natural dualities for varieties of BL-algebras. Arch. Math. Logic 44, 995–1007 (2005) · Zbl 1087.06005 · doi:10.1007/s00153-005-0312-0
[26] Dzobiak W.: On infinite subdirectly irreducible algebras in locally finite equational classes. Algebra Universalis 13, 393–304 (1981)
[27] R. Engelking, General Topology. Mathematical Monographs 60, PWN, Warsaw (1977)
[28] Freese R., McKenzie R.: Residually small varieties with modular congruence lattices. Trans. Amer. Math. Soc. 264, 419–430 (1981) · Zbl 0472.08008 · doi:10.1090/S0002-9947-1981-0603772-9
[29] Freese R., Nation J.B.: Congruence lattices of semilattices. Pacific J. Math. 49, 51–58 (1973) · Zbl 0287.06002 · doi:10.2140/pjm.1973.49.51
[30] Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: an Algebraic Glimpse at Substructural Logics. Studies in Logic and the Foundations of Mathematics, vol. 151. Elsevier (2007) · Zbl 1171.03001
[31] Gehrke M., Harding J.: Bounded lattice expansions. J. Algebra 238, 345–371 (2001) · Zbl 0988.06003 · doi:10.1006/jabr.2000.8622
[32] Gehrke M., Jónsson B.: Bounded distributive lattice expansions. Math. Scand. 94, 13–45 (2004) · Zbl 1077.06008
[33] Golubov E.A., Sapir M.V.: Varieties of finitely approximable semigroups. Soviet Math. Dokl. 20, 828–832 (1979) (Russian) · Zbl 0423.20055
[34] Gouveia M.J: A note on profinite completions and canonical extensions. Algebra Universalis 64, 21–24 (2010) · Zbl 1205.06003 · doi:10.1007/s00012-010-0083-2
[35] Grätzer, G.: Universal Algebra, 2nd edition. Springer, (1979)
[36] Harding J.: On profinite completions and canonical extensions. Algebra Universalis (Special issue dedicated to Walter Taylor) 55, 293–296 (2006) · Zbl 1134.06004 · doi:10.1007/s00012-006-1969-x
[37] Haviar M., Konôpka P., Priestley H.A., Wegener C.B.: Finitely generated free modular ortholattices I. Internat. J. Mathematical Physics 36, 2639–2660 (1997) · Zbl 0899.06004 · doi:10.1007/BF02435704
[38] Hobby, D., McKenzie, R.: The Structure of Finite Algebras. Contemporary Mathematics, 76 American Mathematical Society (1988) Free download at http://www.ams.org/online_bks/conm76/ . · Zbl 0721.08001
[39] Jackson M.: Dualisability of finite semigroups. Int. J. Algebra Comput. 13, 481–497 (2003) · Zbl 1046.08005 · doi:10.1142/S0218196703001535
[40] Kaarli K.: Locally affine complete varieties. J. Austral. Math. Soc. (Series A) 62, 141–159 (1997) · Zbl 0883.08002 · doi:10.1017/S1446788700000720
[41] Kaarli K., Pixley A.: Affine complete varieties. Algebra Universalis 24, 74–90 (1987) · Zbl 0641.08007 · doi:10.1007/BF01188385
[42] Kaarli K., McKenzie R.: Affine complete varieties are congruence distributive. Algebra Universalis 38, 329–354 (1997) · Zbl 0934.08007 · doi:10.1007/s000120050058
[43] Kaarli K., Pixley A.F.: Polynomial completeness in algebraic systems. Chapman&Hall/CRC, Boca Raton, FL (2001) · Zbl 0964.08001
[44] Kearnes K.A.: Cardinality bounds for subdirectly irreducible algebras. J. Pure Appl. Algebra 112, 293–312 (1996) · Zbl 0871.08007 · doi:10.1016/0022-4049(95)00137-9
[45] Kearnes, K.A., Kiss, E.A.: The Shape of Congruence Lattices. Mem. Amer. Math. Soc. (to appear) http://spot.colorado.edu/\(\sim\)kearnes/Papers/cong.pdf · Zbl 1294.08002
[46] Kearnes K.A., Willard R.: Residually finite, congruence meet-semidistributive varieties of finite type have a finite residual bound. Proc. Amer. Math. Soc. 127, 2841–2850 (1995) · Zbl 0924.08007 · doi:10.1090/S0002-9939-99-05097-2
[47] Kearnes, K.A., Willard, R.: Residually finite varieties. In: Conference abstracts, AAA76 (Linz, Austria, 2008) · Zbl 0924.08007
[48] Kowalski T.: Semisimplicity, EDPC and discriminator varieties of residuated lattices. Studia Logica 77, 255–265 (2004) · Zbl 1062.06006 · doi:10.1023/B:STUD.0000037129.58589.0c
[49] Kowalski, T., Kracht, M.: Semisimple varieties of modal algebras Studia Logica 83, 351–363 (2006) · Zbl 1099.03056
[50] Mac Lane, S.: Categories for the Working Mathematician. Graduate Texts in Mathematics, 5, Second Edition Springer (1998) · Zbl 0906.18001
[51] Maksimova L.: Pretabular superintuitionistic logics. Algebra and Logic 11, 308–314 (1972) · Zbl 0275.02027 · doi:10.1007/BF02330744
[52] McKenzie R.: Para-primal varieties: a study of finite axiomatizability and definable principal congruences in locally finite varieties. Algebra Universalis 8, 336–348 (1978) · Zbl 0383.08008 · doi:10.1007/BF02485404
[53] McKenzie R.: Residually small varieties of semigroups. Algebra Universalis 13, 171–201 (1981) · Zbl 0475.20051 · doi:10.1007/BF02483833
[54] McKenzie R.: Monotone clones, residual smallness and congruence distributivity. Bull. Austral. Math. Soc. 41, 283–300 (1990) · Zbl 0695.08012 · doi:10.1017/S0004972700018104
[55] McKenzie R.: The residual bounds of finite algebras. Internat. J. Algebra Comput. 6, 1–28 (1996) · Zbl 0844.08009 · doi:10.1142/S0218196796000027
[56] Mitschke, A.: Implication algebras are 3-permutable and 3-distributive. Algebra Universalis 1, 182–186 (1971/1972) · Zbl 0242.08005
[57] Mitschke A.: Near unanimity identities and congruence distributivity in equational classes. Algebra universalis 8, 29–32 (1978) · Zbl 0368.08003 · doi:10.1007/BF02485367
[58] Nickodemus, M.H.: An extension of Pontryagin duality for discrete groups. (submitted)
[59] Niederkorn P.: Natural dualities for varieties of MV algebras I. J. Math. Anal. Appl. 255, 58–73 (2001) · Zbl 0974.06006 · doi:10.1006/jmaa.2000.7153
[60] Numakura K.: Theorems on compact totally disconnected semigroups and lattices. Proc. Amer. Math. Soc. 8, 623–626 (1957) · Zbl 0081.25602 · doi:10.1090/S0002-9939-1957-0087032-5
[61] Ol’šanskiĭ A. Ju.: Varieties of finitely approximable groups. Izv. Akad. Nauk SSSR Ser. Mat. 33, 915–927 (1969) · Zbl 0186.03703
[62] Papert D.: Congruences in semi-lattices. J. London Math. Soc. 39, 723–729 (1964) · Zbl 0126.03802 · doi:10.1112/jlms/s1-39.1.723
[63] Pitkethly, J.G., Davey, B.A.: Dualisability: Unary Algebras and Beyond. Advances in Mathematics 9, Springer (2005) · Zbl 1085.08001
[64] Pixley, A.F.: A survey of interpolation in universal algebra. In: Universal Algebra Colloq. Math. Soc. J. Bolyai, 29, pp. 583–607 (1982) · Zbl 0493.08004
[65] Priestley, H.A.: Natural dualities for varieties of distributive lattices with a quantifier. In: Algebraic Methods in Logic and in Computer Science (Warsaw, 1991), pp. 291–310 Banach Center Publ., vol. 28, Polish Acd. Sci., Warsaw (1993) · Zbl 0799.06023
[66] Quackenbush, R.W.: Equational classes generated by finite algebras. Algebra Universalis 1, 265–266 (1971/2) · Zbl 0231.08004
[67] Quackenbush R., Szabó Cs.: Strong duality for metacyclic groups. J. Austral. Math. Soc. 73, 377–392 (2002) · Zbl 1024.20018 · doi:10.1017/S1446788700009034
[68] Ribes, L., Zalesskii, P.: Profinite groups. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics] Springer-Verlag, Berlin (2000)
[69] Sankapannavar H. P.: Principal congruences of pseudocomplemented semilattices and congruence extension property. Proc. Amer. Math. Soc. 73, 308–312 (1979) · Zbl 0435.06010 · doi:10.1090/S0002-9939-1979-0518510-4
[70] Schmid J.: Lee classes and sentences for pseudocomplemented semilattices. Algebra Universalis 25, 223–232 (1988) · Zbl 0619.06005 · doi:10.1007/BF01229972
[71] Taylor W.: Residually small varieties. Algebra Universalis 2, 33–53 (1972) · Zbl 0263.08005 · doi:10.1007/BF02945005
[72] Vosmaer, J.: Connecting the profinite completion and the canonical extension using duality. Master of Logic Thesis, Universiteit van Amsterdam (2006) http://www.illc.uva.nl/Publications
[73] Werner, H.: Discriminator Algebras. Studien zur Algebra und Ihre Anwendungen. Band 6. Akademie-Verlag, Berlin (1978)
[74] Willard, R.: An overview of modern universal algebra. In: Logic Colloquium 2004, A. Andretta, K. Kearnes and C. Zambella (eds) Lecture Notes in Logic, Vol. 29, pp. 197–220. Cambridge Univ. Press (2008) · Zbl 1142.08001
[75] Zádori L.: Monotone Jónsson operations and near unanimity functions. Algebra Universalis 33, 216–236 (1995) · Zbl 0817.06001 · doi:10.1007/BF01190934
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.