×

The structure of the Euler-Lagrange mapping. (English) Zbl 1298.70023

Russ. Math. 51, No. 12, 52-70 (2007) and Izv. Vyssh. Uchebn. Zaved., Mat. 2007, No. 12, 51-69 (2007).
Summary: The purpose of this paper is to review properties of the Euler-Lagrange mapping in the higher order variational theory on fibred manifolds. We present basic theorems on the kernel of the Euler-Lagrange mapping, describing variationally trivial Lagrangians, and its image, characterizing variational source forms. We discuss invariance properties of Lagrangians and Euler-Lagrange forms, and the Noether’s theory.

MSC:

70G45 Differential geometric methods (tensors, connections, symplectic, Poisson, contact, Riemannian, nonholonomic, etc.) for problems in mechanics
Full Text: DOI

References:

[1] S. J. Aldersley, ”Higher Euler Operators and Some of their Applications,” J. Math. Phys. 20, 522–531 (1979). · Zbl 0416.58028 · doi:10.1063/1.524104
[2] I. M. Anderson, ”Introduction to the Variational Bicomplex,” Contemporary Mathematics 132, 51–73 (1992). · Zbl 0772.58013 · doi:10.1090/conm/132/1188434
[3] I. Anderson and T. Duchamp, ”On the Existence of Global Variational Principles,” Am. J. Math. 102, 781–867 (1980). · Zbl 0454.58021 · doi:10.2307/2374195
[4] J. Brajercik and D. Krupka, ”Variational Principles for Locally Variational Forms,” J. Math. Phys. 46(5), 052903, 15 p. (2005). · Zbl 1110.58011 · doi:10.1063/1.1901323
[5] P. Dedecker and W. M. Tulczyjew, ”Spectral Sequences and the Inverse Problem of the Calculus of Variations,” in International Colloqium, ”Differential Geometric Methods in Mathematical Physics,” Aix-en-Provence, 1979 (Lecture Notes in Math., Springer, Berlin, 1980) 836, 498–503.
[6] P. L. García, ”The Poincaré-Cartan Invariant in the Calculus of Variations,” Symposia Mathematica 14, 219–246 (1974).
[7] H. Goldschmidt and S. Sternberg, ”The Hamilton-Cartan Formalism in the Calculus of Variations,” Ann. Inst. H. Poincaré 23, 203–267 (1973). · Zbl 0243.49011
[8] M. Gotay, ”An Exterior Differential Systems Approach to the Cartan Form,” in Geométrie Symplectique et Physique Mathematique, Ed. by P. Donato et al. (Birkhauser, Boston, 1991). · Zbl 0747.58006
[9] H. Helmholtz, ”Über die physikalische Bedeutung des Prinzips der kleinsten Wirkung,” J. für die reine und angewandte Mathematik 100, 137–166 (1886). · JFM 18.0941.01
[10] I. Kolar and R. Vitolo, ”On the Helmholtz Operator for Euler Morphisms,” Math. Proc. Camb. Phil. Soc. 135, 277–290 (2003). · Zbl 1048.58012 · doi:10.1017/S0305004103006649
[11] M. Krbek and J. Musilová, ”Representation of the Variational Sequence by Forms,” Acta Applicandae Mathematicae 88, 177–199 (2005). · Zbl 1085.58014 · doi:10.1007/s10440-005-4980-x
[12] D. Krupka, ”A Geometric Theory of Ordinary First-Order Variational Problems in Fibered Manifolds, I. Critical sections,” J. Math. Anal. Appl. 49, 180–206 (1975). · Zbl 0312.58002 · doi:10.1016/0022-247X(75)90169-9
[13] D. Krupka, ”A Geometric Theory of Ordinary First-Oorder Variational Problems in Fibered Manifolds, II. Invariance,” J. Math. Anal. Appl. 49, 469–476 (1975). · Zbl 0312.58003 · doi:10.1016/0022-247X(75)90190-0
[14] D. Krupka, ”Lepagean Forms in Higher Order Variational Theory,” in Proceedings of IUTAM-ISIMM Symposium ”Modern Developments in Analytical Mechanics,” Turin, June 1982 (Academy of Sciences of Turin, 1983), pp. 197–238.
[15] D. Krupka, ”On the Local Structure of the Euler-Lagrange Mapping of the Calculus of Variations,” in Proceedings of Conference on Differential Geometry and Applications, Nove Mesto na Morave, September 1980 (Charles Univ., Prague, 1981), pp. 181–188; ArXiv: math-ph/0203034.
[16] D. Krupka, ”Some Geometric Aspects of Variational Problems in Fibered Manifolds,” Folia Fac. Sci. Nat. Univ. Purk. Brunensis, Physica 14, Brno, Czechoslovakia, 1973; ArXiv:math-ph/0110005.
[17] D. Krupka, ”The Total Divergence Equation,” Lobachevskii J. of Math. 23, 71–93 (2006). · Zbl 1116.35034
[18] D. Krupka, ”Variational Sequences on Finite Order Jet Spaces,” in Proceedings of Conference, Brno, Czechoslovakia, 1989, Ed. by J. Janyška and D. Krupka (World Scientific, Singapore, 1990), pp. 236–254. · Zbl 0813.58014
[19] D. Krupka and M. Krupka, ”Jets and Contact Elements,” in Proceedings of the Seminar on Differential Geometry, Ed. by D. Krupka (Mathematical Publications, Silesian Univ. in Opava, Opava, Czech Republic, 2000), pp. 39–85. · Zbl 1020.58002
[20] D. Krupka and J. Musilová, ”Trivial Lagrangians in Field Theory,” Diff. Geom. Appl. 9, 293–305 (1998). · Zbl 0932.58024 · doi:10.1016/S0926-2245(98)00023-0
[21] D. Krupka and O. Stepanková, ”On the Hamilton Form in Second-Order Calculus of Variations,” in Proceedings of the Meeting ”Geometry and Physics,” Florence, October 1982 (Pitagora Editrice Bologna, 1983), pp. 85–101.
[22] O. Krupková, ”Hamiltonian Field Theory,” J. Geom. Phys. 43, 93–132 (2002). · Zbl 1016.37033 · doi:10.1016/S0393-0440(01)00087-0
[23] O. Krupková, ”Helmholtz Conditions in the Geometry of Second-Order Ordinary Differential Equations,” papers in honor of W. Sarlet, Gent University (to appear).
[24] O. Krupková, ”Lepagean 2-Forms in Higher Order Hamiltonian Mechanics, I. Regularity,” Arch. Math. (Brno) 22, 97–120 (1986). · Zbl 0637.58002
[25] O. Krupková, The Geometry of Ordinary Variational Equations, Lecture Notes in Math. 1678 (Springer, Berlin, 1997). · Zbl 0936.70001
[26] D. Saunders, The Geometry of Jet Bundles (Cambridge Univ. Press, 1989). · Zbl 0665.58002
[27] N. Ya. Sonin, ”On the Definition of Maximal and Minimal Properties,” Warsaw University Izvestiya, Nos. 1–2, 1–68 (1886).
[28] F. Takens, ”A Global Version of the Inverse Problem of the Calculus of Variations,” J. Differential Geometry 14, 543–562 (1979). · Zbl 0463.58015 · doi:10.4310/jdg/1214435235
[29] E. Tonti, ”Variational Formulation of Nonlinear Differential Equations I,” Bull. Acad. Roy. Belg. C. Sci. 55, 137–165 (1969). · Zbl 0182.11402
[30] E. Tonti, ”Variational Formulation of Nonlinear Differential Equations II,” Bull. Acad. Roy. Belg. C. Sci. 55, 262–278 (1969). · Zbl 0186.14301
[31] A. Trautman, ”Invariance of Lagrangian Systems,” in General Relativity (Papers in honor of J. L. Synge, Oxford, Clarendon Press, 1972), pp. 85–99. · Zbl 0273.58004
[32] M. M. Vainberg, Variational Methods in the Theory of Nonlinear Operators (GITL, Moscow, 1959) [in Russian].
[33] A. M. Vinogradov, I. S. Krasilschik, and V. V. Lychagin, Introduction to the Geometry of Nonlinear Differential Equations (Nauka, Moscow, 1986) [in Russian].
[34] R. Vitolo, ”Finite Order Lagrangian Bicomplexes,” Math. Proc. Cambridge Phil. Soc. 125, 321–333 (1999). · Zbl 0927.58008 · doi:10.1017/S0305004198002837
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.