×

Upper estimates of transition densities for stable-dominated semigroups. (English) Zbl 1298.60086

The authors prove estimates for the transition semigroup and the transition density (heat kernel) of a class of Feller processes which are dominated by rotationally invariant \(\alpha\)-stable Lévy processes. Let \(Y_t\) be a Lévy process (a process with independent and stationary increments and càdlàg paths). It is well known that an \(\alpha\)-stable Lévy process has the characteristic function \(e^{-t|\xi|^\alpha}\) \((\alpha\in (0,2))\) and that the transition semigroup admits a density satisfying \[ p(t,x,y) = p(t,x-y) \asymp t^{-d/\alpha}\wedge \frac{t}{|x-y|^{\alpha+d}} \] (we write \(\asymp\) if the two sides can be estimated against each other with absolute constants). Notice that one of the factors in the minimum, \(y\mapsto |y|^{-\alpha-d}\), is (up to a constant) the density of the Lévy (or jump) measure of \(Y_t\).
Now let \(X_t\) be a Feller process admitting a symbol \(p(x,\xi)\) (we refer to [B. Böttcher et al., Lévy matters III. Lévy-type processes: construction, approximation and sample path properties. Cham: Springer (2013; Zbl 1384.60004)] for details), i.e., for every fixed \(x\), the function \(\xi\mapsto p(x,\xi)\) is the characteristic exponent of a Lévy process: \[ p(x,\xi) = c(x) + i\xi\ell(x) + \sum_{j,k=1}^d q_{jk}(x)\xi_j\xi_k + \int_{y\neq 0}\left(1-e^{iy\xi}+ 1_{(0,1)}(|y|)y\xi\right)\nu(x,dy). \] Here, \((\ell(x),q_{jk}(x),\nu(x,dy))\) is, if \(x\) is fixed, a Lévy triplet. Under certain additional assumptions one can show that such a symbol gives a Feller process. This is assumed throughout. Moreover, it is assumed that
\(\nu(x,x+dy) = f(x,y)\,dy\) for some continuous \(f:\mathbb R^d\times\mathbb R^d\setminus\{x\neq y\}\to\mathbb R\);
\(f(x,y)\leq M\phi(|x-y|)|x-y|^{-d-\alpha}\) for some \(C^2\)-function \(\phi\) such that \(\phi|[0,1]\equiv 1\) and \(\phi\) does not oscillate too much;
symmetric jumps: \(f(x,x+y)=f(x,x-y)\) and reversibility \(f(x,y)=f(y,x)\);
minimal level of jump activity: \(\int_{|x-y|>\epsilon} f(x,y)/\phi(|x-y|)\,dy\geq c\epsilon^{-\alpha}\) for all \(x\).
Then the semigroup \(P_t\) of the associated Feller process admits a transition density \(p(t,x,y)\) such that \[ p(t,x,y)\leq c'' e^{c't}\left(t^{-d/\alpha}\wedge \frac{t\phi(|x-y|)}{|x-y|^{d+\alpha}}\right). \] The proof uses approximations of Feller processes and their semigropus by compound Poisson processes (obtained by cutting off all small jumps; the assumptions above guarantee that one can control the small-jump activity) and the corresponding semigroups. This part is based on one of the authors’ earlier work [P. Sztonyk, Potential Anal. 33, No. 3, 211–226 (2010; Zbl 1205.60139)], see also [B. Böttcher and R. L. Schilling, Stoch. Dyn. 9, No. 1, 71–80 (2009; Zbl 1168.60359)], where a similar approximation is used]. Several interesting examples are given at the end of the paper.

MSC:

60J75 Jump processes (MSC2010)
60J35 Transition functions, generators and resolvents
47D03 Groups and semigroups of linear operators

References:

[1] Barlow M. T., Grigor’yan A., Kumagai T.: Heat kernel upper bounds for jump processes and the first exit time. J. Reine Angew. Math. 626, 135-157 (2009) · Zbl 1158.60039
[2] Blumenthal R. M., Getoor R. K.: Some theorems on stable processes. Trans. Amer. Math. Soc. 95, 263-273 (1960) · Zbl 0107.12401 · doi:10.1090/S0002-9947-1960-0119247-6
[3] Bogdan K., Jakubowski T.: Estimates of heat kernel of fractional Laplacian perturbed by gradient operators. Comm. Math. Phys. 271(1), 179-198 (2007) · Zbl 1129.47033 · doi:10.1007/s00220-006-0178-y
[4] Bogdan, K., Sztonyk, P.: Estimates of potential kernel and Harnack’s inequality for anisotropic fractional Laplacian. Stud. Math. 181, No. 2, 101-123 (2007). · Zbl 1223.47038
[5] Böttcher, B., Schilling, R. L.: Approximation of Feller processes by Markov chains with Lévy increments. Stoch. Dyn. 9, No. 1, 71-80 (2009). · Zbl 1168.60359
[6] Chen, Z.-Q., Kim, P. and Kumagai, T.: Global Heat Kernel Estimates for Symmetric Jump Processes. Trans. Amer. Math. Soc., 363, no. 9, 5021-5055 (2011). · Zbl 1234.60088
[7] Chen, Z.-Q., Kumagai, T.: Heat kernel estimates for stable-like processes on d-sets. Stochastic Process. Appl. 108, no. 1, 27-62 (2003). · Zbl 1075.60556
[8] Chen, Z.-Q., Kumagai, T.: Heat kernel estimates for jump processes of mixed types on metric measure spaces. Probab. Theory Relat. Fields 140, No. 1-2, 277-317 (2008). · Zbl 1131.60076
[9] Ethier, S. N., Kurtz, T. G.: Markov processes: characterization and convergence. Wiley Series in Probability and Mathematical Statistics, John Wiley, New York-Chicester-Brisbane-Toronto-Singapore (1986). · Zbl 0592.60049
[10] Grigor’yan A., Hu J., Lau K-S.: Comparison inequalities for heat semigroups and heat kernels on metric measure spaces. J Funct Anal 259, 2613-2641 (2010) · Zbl 1207.58021 · doi:10.1016/j.jfa.2010.07.010
[11] Hasegawa M.: A Note on the Convergence of Semi-groups of Operators. Proc. Japan Acad. 40, 262-266 (1964) · Zbl 0207.45202 · doi:10.3792/pja/1195522770
[12] Hoh W.: Pseudo differential operators generating Markov processes. Habilitationsschrift, Universität Bielefeld (1998) · Zbl 0922.47045
[13] Hoh W.: The martingale problem for a class of pseudo differential operators. Math. Ann. 300, 121-147 (1994) · Zbl 0805.47045 · doi:10.1007/BF01450479
[14] Hoh W.: A symbolic calculus for pseudo differential operators generating Feller semigroups. Osaka J. Math. 35, 798-820 (1998) · Zbl 0922.47045
[15] Jacob N.: Feller semigroups, Dirichlet forms and pseudo differential operators. Forum Math. 4, 433-446 (1992) · Zbl 0759.60078 · doi:10.1515/form.1992.4.433
[16] Jacob N.: A class of Feller semigroups generated by pseudo differential operators. Math. Z. 215, 151-166 (1994) · Zbl 0795.35154 · doi:10.1007/BF02571704
[17] Jacob, N.: Pseudo differential operators and Markov processes. Vol. I : Fourier analysis and semigroups. Imperial College Press, London (2001). · Zbl 0987.60003
[18] Jacob, N.: Pseudo-Differential Operators and Markov Processes, Vol. 2 : Generators and Their Potential Theory. Imperial College Press, London (2002). · Zbl 1005.60004
[19] Jacob, N.: Pseudo-Differential Operators and Markov Processes, Vol. 3 : Markov Processes and Applications. Imperial College Press, London (2005). · Zbl 1076.60003
[20] N. Jacob, V. Knopova, S. Landwehr, R. Schilling, A geometric interpretation of the transition density of a symmetric Lévy process, Sci. China Math. 55 (2012), no. 6, 1099-1126. · Zbl 1279.60097
[21] Knopova V., Kulik A.: Exact asymptotic for distribution densities of Lévy functionals. Electronic Journal of Probability 16, 1394-1433 (2011) · Zbl 1245.60051 · doi:10.1214/EJP.v16-909
[22] Knopova V., Schilling R.: Transition density estimates for a class of Lévy and Lévy-type processes. J. Theoret. Probab. 25(1), 144-170 (2012) · Zbl 1242.60082 · doi:10.1007/s10959-010-0300-0
[23] Kulczycki T, Siudeja B.: Intrinsic ultracontractivity of the Feynman-Kac semigroup for the relativistic stable process. Trans. Amer. Math. Soc. 358(11), 5025-5057 (2006) · Zbl 1112.47034 · doi:10.1090/S0002-9947-06-03931-6
[24] Lewandowski, M. Point regularity of p-stable density in \[{\mathcal{R}^d}\] Rd and Fisher information. Probab. Math. Stat. 19, No.2, 375-388 (1999). · Zbl 0985.60016
[25] Mimica, A. Heat kernel upper estimates for symmetric jump processes with small jumps of high intensity, Potential Anal. 36, no. 2, 203-222 (2012). · Zbl 1239.60077
[26] Schilling, R. L., Uemura, T.: On the Feller property of Dirichlet forms generated by pseudo differential operators. Tohoku Math. J. (2) 59, no. 3, 401-422 (2007). · Zbl 1141.31006
[27] Sztonyk, P.: Regularity of harmonic functions for anisotropic fractional Laplacians. Math. Nachr. 283 No. 2, 289-311 (2010). · Zbl 1194.47044
[28] Sztonyk, P.: Estimates of tempered stable densities, J. Theoret. Probab. 23 (1), 127-147 (2010). · Zbl 1393.60050
[29] Sztonyk P.: Approximation of Stable-dominated Semigroups. Potential Anal. 33, 211-226 (2010) · Zbl 1205.60139 · doi:10.1007/s11118-009-9165-1
[30] Sztonyk P.: Transition density estimates for jump Lévy processes. Stochastic Process. Appl. 121, 1245-1265 (2011) · Zbl 1217.60036 · doi:10.1016/j.spa.2011.03.002
[31] Trotter, H. F.: Approximation of semi-groups of operators. Pacific J. Math. 8 (1958), 887-919. · Zbl 0099.10302
[32] Watanabe, T.: Asymptotic estimates of multi-dimensional stable densities and their applications. Trans. Am. Math. Soc. 359, No. 6, 2851-2879 (2007). · Zbl 1124.62063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.