×

Estimates of tempered stable densities. (English) Zbl 1393.60050

Summary: Estimates of densities of convolution semigroups of probability measures are given under specific assumptions on the corresponding Lévy measure and the Lévy-Khinchin exponent. The assumptions are satisfied, e.g., by tempered stable semigroups of J. Rosiński.

MSC:

60G51 Processes with independent increments; Lévy processes
60E07 Infinitely divisible distributions; stable distributions
60J35 Transition functions, generators and resolvents
60J45 Probabilistic potential theory

References:

[1] Bogdan, K., Jakubowski, T.: Estimates of heat kernel of fractional Laplacian perturbed by gradient operators. Commun. Math. Phys. 271(1), 179–198 (2007) · Zbl 1129.47033 · doi:10.1007/s00220-006-0178-y
[2] Bogdan, K., Sztonyk, P.: Estimates of potential kernel and Harnack’s inequality for anisotropic fractional Laplacian. Stud. Math. 181(2), 101–123 (2007) · Zbl 1223.47038 · doi:10.4064/sm181-2-1
[3] Chen, Z.-Q., Kim, P., Kumagai, T.: Weighted Poincaré inequality and heat kernel estimates for finite range jump processes. Math. Ann. 342(4), 833–883 (2008) · Zbl 1156.60069 · doi:10.1007/s00208-008-0258-8
[4] Chen, Z.-Q., Kumagai, T.: Heat kernel estimates for stable-like processes on d-sets. Stoch. Process. Appl. 108(1), 27–62 (2003) · Zbl 1075.60556 · doi:10.1016/S0304-4149(03)00105-4
[5] Chen, Z.-Q., Kumagai, T.: Heat kernel estimates for jump processes of mixed types on metric measure spaces. Probab. Theory Relat. Fields 140(1–2), 277–317 (2008) · Zbl 1131.60076 · doi:10.1007/s00440-007-0070-5
[6] Constantine, G.M., Savits, T.H.: A multivariate Faa di Bruno formula with applications. Trans. Am. Math. Soc. 348(2), 503–520 (1996) · Zbl 0846.05003 · doi:10.1090/S0002-9947-96-01501-2
[7] Dziubański, J.: Asymptotic behaviour of densities of stable semigroups of measures. Probab. Theory Relat. Fields 87, 459–467 (1991) · Zbl 0695.60013 · doi:10.1007/BF01304275
[8] Głowacki, P.: Lipschitz continuity of densities of stable semigroups of measures. Colloq. Math. 66(1), 29–47 (1993) · Zbl 0837.43009
[9] Głowacki, P., Hebisch, W.: Pointwise estimates for densities of stable semigroups of measures. Stud. Math. 104, 243–258 (1993) · Zbl 0812.43005
[10] Grzywny, T.: Potential theory for {\(\alpha\)}-stable relativistic process. Master Thesis, Institut of Mathematics and Computer Sciences, Wrocław University of Technology (2005)
[11] Grzywny, T., Ryznar, M.: Two-sided optimal bounds for Green functions of half-spaces for relativistic {\(\alpha\)}-stable process. Potential Anal. 28(3), 201–239 (2008) · Zbl 1146.60059 · doi:10.1007/s11118-007-9071-3
[12] Hiraba, S.: Asymptotic behaviour of densities of multi-dimensional stable distributions. Tsukuba J. Math. 18(1), 223–246 (1994) · Zbl 0807.60021
[13] Hiraba, S.: Asymptotic estimates for densities of multi-dimensional stable distributions. Tsukuba J. Math. 27(2), 261–287 (2003) · Zbl 1172.62307
[14] Houdré, C., Kawai, R.: On layered stable processes. Bernoulli 13(1), 252–278 (2007) · Zbl 1121.60052 · doi:10.3150/07-BEJ5034
[15] Jacob, N.: Pseudo Differential Operators and Markov Processes. Fourier Analysis and Semigroups, vol. I. Imp. Coll. Press, London (2001) · Zbl 0987.60003
[16] Kulczycki, T., Siudeja, B.: Intrinsic ultracontractivity of the Feynman–Kac semigroup for relativistic stable processes. Trans. Am. Math. Soc. 358(11), 5025–5057 (2006) · Zbl 1112.47034 · doi:10.1090/S0002-9947-06-03931-6
[17] Lewandowski, M.: Point regularity of p-stable density in d and Fisher information. Probab. Math. Stat. 19(2), 375–388 (1999) · Zbl 0985.60016
[18] Picard, J.: Density in small time at accessible points for jump processes. Stochastic Process. Appl. 67(2), 251–279 (1997) · Zbl 0889.60088 · doi:10.1016/S0304-4149(97)00008-2
[19] Pruitt, W.E., Taylor, S.J.: The potential kernel and hitting probabilities for the general stable process in R N . Trans. Am. Math. Soc. 146, 299–321 (1969) · Zbl 0229.60052
[20] Rosinski, J.: Tempering stable processes. Stoch. Process. Appl. 117(6), 677–707 (2007) · Zbl 1118.60037 · doi:10.1016/j.spa.2006.10.003
[21] Ryznar, M.: Estimates of Green function for relativistic {\(\alpha\)}-stable process. Potential Anal. 17(1), 1–23 (2002) · Zbl 1004.60047 · doi:10.1023/A:1015231913916
[22] Sato, K.-I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)
[23] Sztonyk, P.: Regularity of harmonic functions for anisotropic fractional Laplacians. Math. Nach. (to appear) · Zbl 1194.47044
[24] Watanabe, T.: Asymptotic estimates of multi-dimensional stable densities and their applications. Trans. Am. Math. Soc. 359(6), 2851–2879 (2007) · Zbl 1124.62063 · doi:10.1090/S0002-9947-07-04152-9
[25] Zaigraev, A.: On asymptotic properties of multidimensional {\(\alpha\)}-stable densities. Math. Nachr. 279(16), 1835–1854 (2006) · Zbl 1106.60021 · doi:10.1002/mana.200310459
[26] Zolotarev, V.M.: One-Dimensional Stable Distributions. Am. Math. Soc., Providence (1986) · Zbl 0589.60015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.