×

A short proof of the minimality of Simons cone. (English) Zbl 1165.53305

E. Bombieri, E. de Giorgi, and E. Giusti [Invent. Math., 243–268 (1969; Zbl 0183.25901)] proved that the Simons cone is a minimal surface, thus providing the first example of a minimal surface with a singularity. We suggest a simplified proof of the same result. Our proof is based on the use of sub-calibrations, which are unit vector fields extending the normal vector to the surface, and having non-positive divergence. With respect to calibrations (which are divergence free) sub-calibrations are more easy to find and anyway are enough to prove the minimality of the surface.

MSC:

53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature

Citations:

Zbl 0183.25901

References:

[1] D. BENARROS - M. MIRANDA, Lawson cones and the Bernstein theorem. Advances in geometric analysis and continuum mechanics (1993), pp. 44-56. Zbl0860.53003 MR1356726 · Zbl 0860.53003
[2] E. BOMBIERI - E. D. GIORGI - E. GIUSTI, Minimal cones and the Bernstein problem, Inventiones math., 7 (1969), pp. 243-268. Zbl0183.25901 MR250205 · Zbl 0183.25901 · doi:10.1007/BF01404309
[3] P. CONCUS - M. MIRANDA, Macsyma and minimal surfaces, Proc. of Symposia in Pure Mathematics, by the Amer. Math. Soc., 44 (1986), pp. 163-169. MR840272
[4] A. DAVINI, On calibrations for Lawson’s cones, Rend. Sem. Mat. Univ. Padova, 111 (2004), pp. 55-70. Zbl1127.53047 MR2076732 · Zbl 1127.53047
[5] E. GIUSTI, Minimal Surfaces and Functions of Bounded Variation, volume 80 of Monographs in Mathematics. Birkhäuser, 1984. Zbl0545.49018 MR775682 · Zbl 0545.49018
[6] J. H. B. LAWSON, The equivariant Plateau problem and interior regularity. Trans. Amer. Math. Soc., 173 (1972), pp. 231-249. Zbl0279.49043 MR308905 · Zbl 0279.49043 · doi:10.2307/1996271
[7] U. MASSARI - M. MIRANDA, A remark on minimal cones, Boll. Un. Mat. Ital., 6(2-A) (1983), pp. 231-249. Zbl0518.49030 MR694754 · Zbl 0518.49030
[8] U. MASSARI, M. MIRANDA - M. MIRANDA Jr. The Bernstein problem in higher dimensions, Boll. Un. Mat. Ital., 2008 (to appear). Zblpre05320553 · Zbl 1217.49032
[9] M. MIRANDA, Grafici minimi completi, Ann. Univ. Ferrara, 23 (1977), pp. 269-272. Zbl0367.53001 MR467551 · Zbl 0367.53001
[10] M. MIRANDA, Superficie minime e il problema di Plateau, Quaderni di Matematica, Dipartimento di Matematica “De Giorgi”, Università degli studi di Lecce, 2006.
[11] F. MORGAN, Calibrations and new singularities in area-minimizing surfaces: A survey, Variatonal methods, Proc. Conf. (Paris/Fr. 1988), Prog. nonlinear Differ. Equ. Appl., 4 (1990), pp. 392-342. Zbl0721.53058 MR1205164 · Zbl 0721.53058
[12] P. SIMOES, A class of minimal cones in Rn , n ! 8, that minimize area, PhD thesis, University of California, 1973. MR331197
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.