×

Dynamical localization for unitary Anderson models. (English) Zbl 1186.82045

The authors establish dynamical localization properties of certain families of unitary random operators, called unitary Anderson model, on the \(d\)-dimensional lattice in various regimes. For the unitary Anderson model one choose a unitary operator on \(l^2(\mathbb{Z}^d)\) of the form \(U_\omega=D_\omega S\), where S is a deterministic unitary operator and \(D_\omega\) a multiplication operator by random phases, i.e., for every \(\phi\in l^2(\mathbb Z^d)\) and \(k\in\mathbb Z^d,\)
\[ (D_\omega\phi)(k)=\exp(-i\theta^\omega_k)\phi(k), \]
with i.i.d. random phases \(\theta^\omega_k\) taking values in \(T:=\mathbb{R}/2\pi \mathbb{Z}.\) It is proved that an exponential decay of fractional moments of the Green function implies dynamical localization, which in turn implies spectral localization.

MSC:

82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics
47B80 Random linear operators

References:

[1] Aizenman, M.: Localization at weak disorder: some elementary bounds. Rev. Math. Phys. 6, 1163 (1994) · Zbl 0843.47039 · doi:10.1142/S0129055X94000419
[2] Aizenman, M., Graf, G.-M.: Localization bounds for an electron gas. J. Phys., A, Math. Gen. 31, 6783 (1998) · Zbl 0953.82009 · doi:10.1088/0305-4470/31/32/004
[3] Aizenman, M., Elgart, A., Naboko, S., Schenker, J., Stolz, G.: Moment analysis for localization in random Schrödinger operators. Invent. Math. 163, 343–413 (2006) · Zbl 1090.81026 · doi:10.1007/s00222-005-0463-y
[4] Aizenman, M., Molchanov, S.: Localization at large disorder and at extreme energies: an elementary derivation. Commun. Math. Phys. 157, 245–278 (1993) · Zbl 0782.60044 · doi:10.1007/BF02099760
[5] Aizenman, M., Schenker, J., Friedrich, R., Hundertmark, D.: Finite-volume fractional-moment criteria for Anderson localization. Commun. Math. Phys. 224, 219–253 (2001) · Zbl 1038.82038 · doi:10.1007/s002200100441
[6] Ao, P.: Absence of localization in energy space of a Bloch electron driven by a constant electric force. Phys. Rev., B 41, 3998–4001 (1989) · doi:10.1103/PhysRevB.41.3998
[7] Asch, J., Duclos, P., Exner, P.: Stability of driven systems with growing gaps, quantum rings, and Wannier ladders. J. Stat. Phys. 92, 1053–1070 (1998) · Zbl 1079.81518 · doi:10.1023/A:1023000828437
[8] Asch, J., Bentosela, F., Duclos, P., Nenciu, G.: On the dynamics of crystal electrons, high momentum regime. J. Math. Anal. Appl. 256, 99–114 (2001) · Zbl 0986.34072 · doi:10.1006/jmaa.2000.7293
[9] Bellissard, J.: Stability and instability in quantum mechanics. In: Albeverio, S., Blanchard, P. (eds.) Trends and Developments in the Eighties, pp. 1–106. World Scientific, Singapore (1985)
[10] Bellissard, J.: Stability and chaotic behaviour in quantum rotators. In: Albeverio, S., Casati, G., Merlini, D. (eds.) Stochastic Processes in Classical and Quantum Systems. Springer, New York (1986) · Zbl 0612.46066
[11] Blatter, G., Browne, D.: Zener tunneling and localization in small conducting rings. Phys. Rev., B 37, 3856 (1988) · doi:10.1103/PhysRevB.37.3856
[12] Bourget, O.: Singular continuous Floquet operator for periodic quantum systems. J. Math. Anal. Appl. 301(1), 65–83 (2005) · Zbl 1061.47066 · doi:10.1016/j.jmaa.2004.07.008
[13] Bourget, O., Howland, J.S., Joye, A.: Spectral analysis of unitary band matrices. Commun. Math. Phys. 234, 191–227 (2003) · Zbl 1029.47016 · doi:10.1007/s00220-002-0751-y
[14] Boutet de Monvel, A., Naboko, S., Stollmann, P., Stolz, G.: Localization near fluctuation boundaries via fractional moments and applications. J. Anal. Math. 100, 83–116 (2006) · Zbl 1173.82331 · doi:10.1007/BF02916756
[15] Bunimovich, L., Jauslin, H.R., Lebowitz, J.L., Pellegrinotti, A., Nielaba, P.: Diffusive energy growth in classical and quantum driven oscillators. J. Stat. Phys. 62, 793 (1991) · Zbl 0741.70017 · doi:10.1007/BF01017984
[16] Carmona, R., Klein, A., Martinelli, F.: Anderson localization for Bernoulli and other singular potentials. Commun. Math. Phys. 108, 41–66 (1987) · Zbl 0615.60098 · doi:10.1007/BF01210702
[17] Carmona, R., Lacroix, J.: Spectral theory of random Schrödinger operators. In: Probability and its Applications. Birkhäuser, Boston (1990) · Zbl 0717.60074
[18] Casati, G., Ford, J., Guarneri, I., Vivaldi, F.: Search for randomness in the kicked quantum rotator. Phys. Rev., A 34(2), 1413 (1986) · doi:10.1103/PhysRevA.34.1413
[19] Combes, J.M., Thomas, L.: Asymptotic behaviour of eigenfunctions for multiparticle Schrödinger operators. Commun. Math. Phys. 34, 251–270 (1973) · Zbl 0271.35062 · doi:10.1007/BF01646473
[20] Guarneri, I.: Spectral properties of quantum diffusion on discrete lattices. Europhys. Lett. 10, 95–100 (1989) · doi:10.1209/0295-5075/10/2/001
[21] Combescure, M.: Spectral properties of a periodically kicked quantum Hamiltonian. J. Stat. Phys. 59, 679 (1990) · Zbl 0713.58044 · doi:10.1007/BF01025846
[22] Combescure, M.: Recurrent versus diffusive dynamics for a kicked quantum oscillator. Ann. Inst. Henri Poincaré 57, 67–87 (1992) · Zbl 0766.58061
[23] Damanik, D., Stollmann, P.: Multiscale analysis implies strong dynamical localization. Geom. Funct. Anal. 11, 11–29, (2001) · Zbl 0976.60064 · doi:10.1007/PL00001666
[24] DeBièvre, S., Forni, G.; Transport properties of kicked and quasiperiodic Hamiltonians. J. Stat. Phys. 90, 1201–1223 (1998) · Zbl 0923.47042 · doi:10.1023/A:1023227327494
[25] Demko, S.: Inverses of band matrices and local convergence of spline projections. SIAM J. Numer. Anal. 14, 616–619 (1977) · Zbl 0367.65024 · doi:10.1137/0714041
[26] de Oliveira, C.R.: On kicked systems modulated along the Thue-Morse sequence. J. Phys. A 27, 847–851 (1994) · Zbl 0852.58071 · doi:10.1088/0305-4470/27/12/006
[27] de Oliveira, C.R., Simsen, M.S.: A floquet operator with purely point spectrum and energy instability. Ann. Henri Poincaré 7, 1255–1277 (2008) · Zbl 1135.81015
[28] Duclos, P., Soccorsi, E., Stovicek, P., Vittot, M.: On the stability of periodically time-dependent quantum systems. Rev. Math. Phys. 20, 6 (2008) · Zbl 1170.81024 · doi:10.1142/S0129055X08003390
[29] del Rio, R., Jitomirskaya, S., Last, Y., Simon, B.: Operators with singular continuous spectrum IV: Hausdorff dimensions, rank one perturbations and localization. J. Anal. Math. 69, 153 (1996) · Zbl 0908.47002 · doi:10.1007/BF02787106
[30] Enss, V., Veselic, K.; Bound states and propagating states for time dependent Hamiltonians. Ann. Inst. Henri Poincaré, Ser. A 39, 159–191 (1983) · Zbl 0532.47007
[31] Germinet, F., DeBièvre, S.: Dynamical localization for discrete and continuous random Schrödinger operators. Commun. Math. Phys. 194, 323 (1998) · Zbl 0911.60099 · doi:10.1007/s002200050360
[32] Germinet, F., Klein, A.: A characterization of the Anderson metal-insulator transport transition. Duke Math. J. 124, 309–351 (2004) · Zbl 1062.82020 · doi:10.1215/S0012-7094-04-12423-6
[33] Graf, G.M.: Anderson localization and the space-time characteristic of continuum states. J. Stat. Phys. 75, 337–346 (1994) · Zbl 0828.60092 · doi:10.1007/BF02186292
[34] Hamza, E.: Localization properties for the unitary Anderson model. PhD thesis, University of Alabama at Birmingham, 2007. https://www.mhsl.uab.edu/dt/2008r/hamza.pdf
[35] Hamza, E., Joye, A., Stolz, G.: Localization for random unitary operators. Lett. Math. Phys. 75, 255–272 (2006) · Zbl 1101.82014 · doi:10.1007/s11005-005-0044-4
[36] Hamza, E., Stolz, G.: Lyapunov exponents for unitary Anderson models. J. Math. Phys. 48, 043301 (2007) · Zbl 1137.82315 · doi:10.1063/1.2713996
[37] Howland, J.: Scattering theory for Hamiltonians periodic in time. Indiana Univ. Math. J. 28, 471–494 (1979) · Zbl 0444.47010 · doi:10.1512/iumj.1979.28.28033
[38] Howland, J.: Quantum stability. In: Baslev, E. (ed.) Lecture Notes in Physics, vol. 403, pp. 100–122 (1992) · Zbl 0784.47056
[39] Jauslin, H.R., Lebowitz, J.L.: Spectral and stability aspects of quantum chaos. Chaos 1, 114–121 (1991) · Zbl 0899.58059 · doi:10.1063/1.165809
[40] Joye, A.: Density of states and Thouless formula for random unitary band matrices. Ann. Henri Poincaré 5, 347–379 (2004) · Zbl 1062.81030 · doi:10.1007/s00023-004-0172-x
[41] Joye, A.: Fractional moment estimates for random unitary band matrices. Lett. Math. Phys. 72, 51–64 (2005) · Zbl 1115.82018 · doi:10.1007/s11005-005-3256-8
[42] Kato, T.: Perturbation Theory for Linear Operators. Springer, New York (1982) · Zbl 0493.47008
[43] Kunz, H., Souillard, B.: Sur le spectre des opérateurs aux différences finies aléatoires. Commun. Math. Phys 78, 201 (1980) · Zbl 0449.60048 · doi:10.1007/BF01942371
[44] Lenstra, D., van Haeringen, W.: Elastic scattering in a normal-metal loop causing resistive electronic behavior. Phys. Rev. Lett. 57, 1623–1626 (1986) · doi:10.1103/PhysRevLett.57.1623
[45] McCaw, J., McKellar, B.H.J.: Pure point spectrum for the time evolution of a periodically rank-N kicked Hamiltonian. J. Math. Phys. 46, 032108 (2005) · Zbl 1076.81016 · doi:10.1063/1.1841482
[46] Pinsky, M.A.: Introduction to Fourier Analysis and Wavelets. Brooks/Cole, Florence (2002) · Zbl 1065.42001
[47] Rudin, W.: Real and Complex Analysis, 2nd edn. McGraw-Hill, New York (1987) · Zbl 0925.00005
[48] Ryu, J.-W., Hur, G., Kim, S.W.: Quantum localization in open chaotic systems. Phys. Rev., E, 037201 (2008)
[49] Simon, B.: Orthogonal Polynomials on the Unit Circle, Part 1. American Mathematical Society, Providence (2005) · Zbl 1082.42020
[50] Simon, B.: Orthogonal Polynomials on the Unit Circle, Part 2. American Mathematical Society, Providence (2005) · Zbl 1082.42021
[51] Simon, B.: Aizenman’s theorem for orthogonal polynomials on the unit circle. Constr. Approx. 23, 229–240 (2006) · Zbl 1104.42014 · doi:10.1007/s00365-005-0599-4
[52] Simon, B.: CMV matrices: five years after. J. Comput. Appl. Math. 208, 120–154 (2007) · Zbl 1125.15027 · doi:10.1016/j.cam.2006.10.033
[53] Simon, B.: Absence of ballistic motion. Commun. Math. Phys. 134, 209–212 (1990) · Zbl 0711.34102 · doi:10.1007/BF02102095
[54] Simon, B., Wolff, T.: Singular continuous spectrum under rank one perturbations and localization for random Hamiltonians. Commun. Pure Appl. Math. 39, 75–90 (1986) · Zbl 0609.47001 · doi:10.1002/cpa.3160390105
[55] Stoiciu, M.; Poisson statistics for eigenvalues: from random Schrödinger operators to random CMV matrices. In: CRM Proceedings and Lecture Notes, vol. 42, pp. 465–475 (2007) · Zbl 1132.15022
[56] Stollmann, P.: Caught by Disorder, Bound States in Random Media, Progress in Mathematical Physics, vol. 20. Birkhäuser, Boston (2001) · Zbl 0983.82016
[57] Yajima, K.: Scattering theory for Schrödinger equations with potential periodic in time. J. Math. Soc. Jpn. 29, 729–743 (1977) · Zbl 0356.47010 · doi:10.2969/jmsj/02940729
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.