×

The reductive subgroups of \(F_4\). (English) Zbl 1295.20049

Mem. Am. Math. Soc. 1049, vi, 88 p. (2013).
Summary: Let \(G=G(K)\) be a simple algebraic group defined over an algebraically closed field \(K\) of characteristic \(p\geq 0\). A subgroup \(X\) of \(G\) is said to be \(G\)-completely reducible if, whenever it is contained in a parabolic subgroup of \(G\), it is contained in a Levi subgroup of that parabolic. A subgroup \(X\) of \(G\) is said to be \(G\)-irreducible if \(X\) is in no proper parabolic subgroup of \(G\); and \(G\)-reducible if it is in some proper parabolic of \(G\). In this paper, we consider the case that \(G=F_4(K)\).
We find all conjugacy classes of closed, connected, semisimple \(G\)-reducible subgroups \(X\) of \(G\). Thus we also find all non-\(G\)-completely reducible closed, connected, semisimple subgroups of \(G\). When \(X\) is closed, connected and simple of rank at least two, we find all conjugacy classes of \(G\)-irreducible subgroups \(X\) of \(G\). Together with the work of Amende classifying irreducible subgroups of type \(A_1\) this gives a complete classification of the simple subgroups of \(G\).
Amongst the classification of subgroups of \(G=F_4(K)\) we find infinite varieties of subgroups \(X\) of \(G\) which are maximal amongst all reductive subgroups of \(G\) but not maximal subgroups of \(G\); thus they are not contained in any reductive maximal subgroup of \(G\). The connected, semisimple subgroups contained in no maximal reductive subgroup of \(G\) are of type \(A_1\) when \(p=3\) and of type \(A_1^2\) or \(A_1\) when \(p=2\). Some of those which occur when \(p=2\) act indecomposably on the 26-dimensional irreducible representation of \(G\).
We also use this classification to find all subgroups of \(G=F_4\) which are generated by short root elements of \(G\), by utilising and extending the results of Liebeck and Seitz.

MSC:

20G41 Exceptional groups
20E07 Subgroup theorems; subgroup growth
20E28 Maximal subgroups
Full Text: DOI

References:

[1] H. Azad, M. Barry, and G. Seitz, On the structure of parabolic subgroups, Comm. Algebra 18 (1990), no. 2, 551-562. · Zbl 0717.20029 · doi:10.1080/00927879008823931
[2] Henning Haahr Andersen, Jens Jørgensen, and Peter Landrock, The projective indecomposable modules of \({\mathrm SL}(2,\,p^{n})\), Proc. London Math. Soc. (3) 46 (1983), no. 1, 38-52. · Zbl 0503.20013 · doi:10.1112/plms/s3-46.1.38
[3] Bonnie Amende, G-irreducible subgroups of type A1, ProQuest LLC, Ann Arbor, MI, 2005. Thesis (Ph.D.)-University of Oregon.
[4] Michael Bate, Benjamin Martin, and Gerhard Röhrle, A geometric approach to complete reducibility, Invent. Math. 161 (2005), no. 1, 177-218. · Zbl 1092.20038 · doi:10.1007/s00222-004-0425-9
[5] M. Bate, B. Martin, G. Roehrle, and R. Tange, Closed orbits and uniform s-instability in geometric invariant theory, Trans. Amer. Math. Soc., (to appear). · Zbl 1284.20051
[6] Nicolas Bourbaki, Éléments de mathématique: groupes et algèbres de Lie, Masson, Paris, 1982 (French). Chapitre 9. Groupes de Lie réels compacts. [Chapter 9. Compact real Lie groups]. · Zbl 0505.22006
[7] Armand Borel and Jacques Tits, Homomorphismes “abstraits” de groupes algébriques simples, Ann. of Math. (2) 97 (1973), 499-571 (French). · Zbl 0272.14013
[8] Roger W. Carter, Simple groups of Lie type, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1989. Reprint of the 1972 original; A Wiley-Interscience Publication. · Zbl 0723.20006
[9] Roger W. Carter, Finite groups of Lie type, Wiley Classics Library, John Wiley & Sons, Ltd., Chichester, 1993. Conjugacy classes and complex characters; Reprint of the 1985 original; A Wiley-Interscience Publication.
[10] Arjeh M. Cohen and Bruce N. Cooperstein, The \(2\)-spaces of the standard \(E_6(q)\)-module, Geom. Dedicata 25 (1988), no. 1-3, 467-480. Geometries and groups (Noordwijkerhout, 1986). · Zbl 0643.20025 · doi:10.1007/BF00191937
[11] E. Cline, B. Parshall, L. Scott, and Wilberd van der Kallen, Rational and generic cohomology, Invent. Math. 39 (1977), no. 2, 143-163. · Zbl 0336.20036
[12] Stephen Donkin, On tilting modules for algebraic groups, Math. Z. 212 (1993), no. 1, 39-60. · Zbl 0798.20035 · doi:10.1007/BF02571640
[13] E. B. Dynkin, Maximal subgroups of the classical groups, Trudy Moskov. Mat. Obšč. 1 (1952), 39-166 (Russian).
[14] Jens Carsten Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003. · Zbl 1034.20041
[15] Jens Carsten Jantzen, Nilpotent orbits in representation theory, Lie theory, Progr. Math., vol. 228, Birkhäuser Boston, Boston, MA, 2004, pp. 1-211. · Zbl 1169.14319
[16] Peter Kleidman and Martin Liebeck, The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series, vol. 129, Cambridge University Press, Cambridge, 1990. · Zbl 0697.20004
[17] R. Lawther, Jordan block sizes of unipotent elements in exceptional algebraic groups, Comm. Algebra 23 (1995), no. 11, 4125-4156. · Zbl 0880.20034 · doi:10.1080/00927879508825454
[18] Martin W. Liebeck and Gary M. Seitz, Subgroups generated by root elements in groups of Lie type, Ann. of Math. (2) 139 (1994), no. 2, 293-361. · Zbl 0824.20041 · doi:10.2307/2946583
[19] Martin W. Liebeck and Gary M. Seitz, Reductive subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc. 121 (1996), no. 580, vi+111. · Zbl 0851.20045 · doi:10.1090/memo/0580
[20] Martin W. Liebeck and Gary M. Seitz, On the subgroup structure of exceptional groups of Lie type, Trans. Amer. Math. Soc. 350 (1998), no. 9, 3409-3482. · Zbl 0905.20031 · doi:10.1090/S0002-9947-98-02121-7
[21] Martin W. Liebeck and Gary M. Seitz, The maximal subgroups of positive dimension in exceptional algebraic groups, Mem. Amer. Math. Soc. 169 (2004), no. 802, vi+227. · Zbl 1058.20040 · doi:10.1090/memo/0802
[22] George J. McNinch, Dimensional criteria for semisimplicity of representations, Proc. London Math. Soc. (3) 76 (1998), no. 1, 95-149. · Zbl 0891.20032 · doi:10.1112/S0024611598000045
[23] G. D. Mostow, Fully reducible subgroups of algebraic groups, Amer. J. Math. 78 (1956), 200-221. · Zbl 0073.01603
[24] R. W. Richardson, Affine coset spaces of reductive algebraic groups, Bull. London Math. Soc. 9 (1977), no. 1, 38-41. · Zbl 0355.14020
[25] R. W. Richardson, On orbits of algebraic groups and Lie groups, Bull. Austral. Math. Soc. 25 (1982), no. 1, 1-28. · Zbl 0467.14008 · doi:10.1017/S0004972700005013
[26] Joseph J. Rotman, An introduction to homological algebra, 2nd ed., Universitext, Springer, New York, 2009. · Zbl 1157.18001
[27] Gary M. Seitz, The maximal subgroups of classical algebraic groups, Mem. Amer. Math. Soc. 67 (1987), no. 365, iv+286. · Zbl 0624.20022 · doi:10.1090/memo/0365
[28] J.-P. Serre, 1998 Moursund lectures at the University of Oregon.
[29] Jean-Pierre Serre, Galois cohomology, Corrected reprint of the 1997 English edition, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002. Translated from the French by Patrick Ion and revised by the author. · Zbl 1004.12003
[30] David I. Stewart, The second cohomology of simple \({SL}_3\)-modules, Comm. Algebra, (to appear). · Zbl 1269.20041
[31] David I. Stewart, The reductive subgroups of \(G_2\), J. Group Theory 13 (2010), no. 1, 117-130. · Zbl 1196.20054 · doi:10.1515/JGT.2009.035
[32] -, Restriction maps on 1-cohomology of (algebraic) groups, ArXiv e-prints 1011.1183 (2010).
[33] David I. Stewart, The second cohomology of simple \({\mathrm SL}_2\)-modules, Proc. Amer. Math. Soc. 138 (2010), no. 2, 427-434. · Zbl 1204.20055 · doi:10.1090/S0002-9939-09-10088-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.