×

Closed orbits and uniform \(S\)-instability in geometric invariant theory. (English) Zbl 1284.20051

This is a very well-written paper. Apart from the interesting rationality results proved, there are several comments and examples interspersed which add to the understanding of the topic (even for nonexperts like me).
For a connected, reductive affine algebraic group \(G\) over a field \(k\), J.-P. Serre defined a \(k\)-subgroup \(H\) to be \(G\)-completely reducible (abbreviated as \(G\)-cr.) over \(k\), if each parabolic subgroup \(P\) defined over \(k\), and containing \(H\), contains a Levi subgroup over \(k\) which itself contains \(H\). In fact, the authors can deal with groups which are not connected by replacing parabolic subgroups and Levi subgroups by what the authors call Richardson parabolic subgroups (R-parabolics corresponding to multiplicative one parameter subgroups as defined below) and their Levi subgroups.
Using the notions introduced and rationality results proved in this paper, the authors deduce: If \(k_1\) is a separable extension of \(k\), and \(H\) is \(G\)-cr. over \(k_1\), then \(H\) is \(G\)-cr. over \(k\).
Recently, the first three authors have also proved the converse. Together, these results provide an affirmative answer to a question raised by Serre.
Another problem addressed by the authors is the so-called center conjecture of Tits, which has been recently proved by Mühlherr & Tits. A more general version of the conjecture is answered in the special case of a contractible, fixed point subcomplex of the spherical Tits building of \(G\) over \(k\), using the techniques of the paper.
The authors introduce a new notion which proves the key to the study of rationality properties of algebraic group actions on affine varieties. Let \(V\) be an affine variety defined over \(k\) and let \(G\) be a reductive (possibly not connected) affine algebraic group over \(k\) which acts on \(V\) over \(k\). For \(v\in V\) (not necessarily in \(V(k)\)), the \(G(k)\)-orbit of \(v\) is said to be cocharacter-closed over \(k\) if, for any multiplicative one parameter subgroup \(\lambda\) of \(G\) over \(k\) for which the morphism \(a\mapsto\lambda(a)v\) extends to \(0\) (that is, \(\lim_{a\to 0}\lambda(a)v\) exists), this limit belongs to \(G(k)v\).
If either \(k\) is perfect or \(G\) is connected, the authors show that this property is equivalent to the property that the above limit is in the orbit under \(R_u(P_\lambda)(k)\) where \(P_\lambda\) is the Richardson parabolic subgroup \[ P_\lambda:=\{g\in G:\lim_{a\to 0}\lambda(a)g\lambda(a)^{-1}\text{ exists}\}. \] There are many other applications of this notion; we describe only one below.
For a subgroup \(H\) of \(G\) and some embedding \(G\to\mathrm{GL}_n\), a tuple \(\mathbf h\in H^r\) is said to be ‘generic’ if its image under the embedding generates the associative subalgebra of \(M_n\) spanned by \(H\).
The authors prove: Let \(G\) be connected. Let \(H\) be a subgroup and \(\mathbf h\in H^r\) a generic tuple of \(H\). Then, \(H\) is \(G\)-cr. over \(k\) if and only if \(G(k)h\) is cocharacter-closed over \(k\).

MSC:

20G15 Linear algebraic groups over arbitrary fields
20E42 Groups with a \(BN\)-pair; buildings
14L24 Geometric invariant theory
20E07 Subgroup theorems; subgroup growth

References:

[1] Michael Bate, Benjamin Martin, and Gerhard Röhrle, A geometric approach to complete reducibility, Invent. Math. 161 (2005), no. 1, 177 – 218. · Zbl 1092.20038 · doi:10.1007/s00222-004-0425-9
[2] Michael Bate, Benjamin Martin, and Gerhard Röhrle, Complete reducibility and commuting subgroups, J. Reine Angew. Math. 621 (2008), 213 – 235. · Zbl 1152.20041 · doi:10.1515/CRELLE.2008.063
[3] Michael Bate, Benjamin Martin, and Gerhard Röhrle, On Tits’ centre conjecture for fixed point subcomplexes, C. R. Math. Acad. Sci. Paris 347 (2009), no. 7-8, 353 – 356 (English, with English and French summaries). · Zbl 1223.20041 · doi:10.1016/j.crma.2009.02.018
[4] Michael Bate, Benjamin Martin, Gerhard Röhrle, and Rudolf Tange, Complete reducibility and separability, Trans. Amer. Math. Soc. 362 (2010), no. 8, 4283 – 4311. · Zbl 1204.20063
[5] Michael Bate, Benjamin Martin, Gerhard Röhrle, and Rudolf Tange, Complete reducibility and conjugacy classes of tuples in algebraic groups and Lie algebras, Math. Z. 269 (2011), no. 3-4, 809 – 832. · Zbl 1242.20058 · doi:10.1007/s00209-010-0763-9
[6] Armand Borel, Properties and linear representations of Chevalley groups, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 1 – 55. · Zbl 0793.01013
[7] Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. · Zbl 0726.20030
[8] A. Borel and J. Tits, Éléments unipotents et sous-groupes paraboliques de groupes réductifs. I, Invent. Math. 12 (1971), 95 – 104 (French). · Zbl 0238.20055 · doi:10.1007/BF01404653
[9] Armand Borel and Jacques Tits, Compléments à l’article: ”Groupes réductifs”, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 253 – 276 (French). · Zbl 0254.14018
[10] Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1962. · Zbl 0131.25601
[11] T. L. Gómez, A. Langer, A. H. W. Schmitt, and I. Sols, Moduli spaces for principal bundles in arbitrary characteristic, Adv. Math. 219 (2008), no. 4, 1177 – 1245. · Zbl 1163.14008 · doi:10.1016/j.aim.2008.05.015
[12] Wim H. Hesselink, Uniform instability in reductive groups, J. Reine Angew. Math. 303/304 (1978), 74 – 96. · Zbl 0386.20020 · doi:10.1515/crll.1978.303-304.74
[13] Wim H. Hesselink, Desingularizations of varieties of nullforms, Invent. Math. 55 (1979), no. 2, 141 – 163. · Zbl 0401.14006 · doi:10.1007/BF01390087
[14] Jens Carsten Jantzen, Nilpotent orbits in representation theory, Lie theory, Progr. Math., vol. 228, Birkhäuser Boston, Boston, MA, 2004, pp. 1 – 211. · Zbl 1169.14319
[15] George R. Kempf, Instability in invariant theory, Ann. of Math. (2) 108 (1978), no. 2, 299 – 316. · Zbl 0406.14031 · doi:10.2307/1971168
[16] Jason Levy, Rationality and orbit closures, Canad. Math. Bull. 46 (2003), no. 2, 204 – 215. · Zbl 1076.14532 · doi:10.4153/CMB-2003-021-6
[17] Martin W. Liebeck and Gary M. Seitz, Reductive subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc. 121 (1996), no. 580, vi+111. · Zbl 0851.20045 · doi:10.1090/memo/0580
[18] Martin W. Liebeck and Gary M. Seitz, Variations on a theme of Steinberg, J. Algebra 260 (2003), no. 1, 261 – 297. Special issue celebrating the 80th birthday of Robert Steinberg. · Zbl 1054.20026 · doi:10.1016/S0021-8693(02)00649-X
[19] Martin W. Liebeck and Donna M. Testerman, Irreducible subgroups of algebraic groups, Q. J. Math. 55 (2004), no. 1, 47 – 55. · Zbl 1065.20062 · doi:10.1093/qjmath/55.1.47
[20] Benjamin M. S. Martin, Reductive subgroups of reductive groups in nonzero characteristic, J. Algebra 262 (2003), no. 2, 265 – 286. · Zbl 1103.20045 · doi:10.1016/S0021-8693(03)00189-3
[21] Benjamin M. S. Martin, A normal subgroup of a strongly reductive subgroup is strongly reductive, J. Algebra 265 (2003), no. 2, 669 – 674. · Zbl 1032.20030 · doi:10.1016/S0021-8693(03)00293-X
[22] George McNinch, Completely reducible Lie subalgebras, Transform. Groups 12 (2007), no. 1, 127 – 135. · Zbl 1126.17007 · doi:10.1007/s00031-005-1130-5
[23] Bernhard Mühlherr and Jacques Tits, The center conjecture for non-exceptional buildings, J. Algebra 300 (2006), no. 2, 687 – 706. · Zbl 1101.51004 · doi:10.1016/j.jalgebra.2006.01.011
[24] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. · Zbl 0797.14004
[25] P. E. Newstead, Introduction to moduli problems and orbit spaces, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 51, Tata Institute of Fundamental Research, Bombay; by the Narosa Publishing House, New Delhi, 1978. · Zbl 0411.14003
[26] Alexander Premet, Nilpotent orbits in good characteristic and the Kempf-Rousseau theory, J. Algebra 260 (2003), no. 1, 338 – 366. Special issue celebrating the 80th birthday of Robert Steinberg. · Zbl 1020.20031 · doi:10.1016/S0021-8693(02)00662-2
[27] R. W. Richardson, Conjugacy classes of \?-tuples in Lie algebras and algebraic groups, Duke Math. J. 57 (1988), no. 1, 1 – 35. · Zbl 0685.20035 · doi:10.1215/S0012-7094-88-05701-8
[28] Guy Rousseau, Immeubles sphériques et théorie des invariants, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), no. 5, A247 – A250 (French, with English summary). · Zbl 0375.14013
[29] Alexander H. W. Schmitt, A closer look at semistability for singular principal bundles, Int. Math. Res. Not. 62 (2004), 3327 – 3366. · Zbl 1093.14507 · doi:10.1155/S1073792804132984
[30] Gary M. Seitz, Abstract homomorphisms of algebraic groups, J. London Math. Soc. (2) 56 (1997), no. 1, 104 – 124. · Zbl 0904.20038 · doi:10.1112/S0024610797005176
[31] Jean-Pierre Serre, Semisimplicity and tensor products of group representations: converse theorems, J. Algebra 194 (1997), no. 2, 496 – 520. With an appendix by Walter Feit. · Zbl 0896.20004 · doi:10.1006/jabr.1996.6929
[32] -, La notion de complète réductibilité dans les immeubles sphériques et les groupes réductifs, Séminaire au Collège de France, résumé dans [37, pp. 93-98.] (1997).
[33] -, The notion of complete reducibility in group theory, Moursund Lectures, Part II, University of Oregon, 1998, arXiv:math/0305257v1 [math.GR].
[34] Jean-Pierre Serre, Complète réductibilité, Astérisque 299 (2005), Exp. No. 932, viii, 195 – 217 (French, with French summary). Séminaire Bourbaki. Vol. 2003/2004. · Zbl 1156.20313
[35] T. A. Springer, Linear algebraic groups, 2nd ed., Progress in Mathematics, vol. 9, Birkhäuser Boston, Inc., Boston, MA, 1998. · Zbl 0927.20024
[36] Jacques Tits, Buildings of spherical type and finite BN-pairs, Lecture Notes in Mathematics, Vol. 386, Springer-Verlag, Berlin-New York, 1974. · Zbl 0295.20047
[37] Jacques Tits, Théorie des groupes, Ann. Collège France 87 (1986/87), 89 – 98 (French).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.