×

On integral representations of operator fractional Brownian fields. (English) Zbl 1294.60064

Summary: Operator fractional Brownian fields (OFBFs) are Gaussian, stationary-increment vector random fields that satisfy the operator self-similarity relation \(\{X(c^E t)\}_{t \in \mathbb{R}^m} \overset{\mathcal{L}} {=} \{c^H X(t) \}_{t \in \mathbb{R}^m}\). We establish a general harmonizable representation (Fourier domain stochastic integral) for OFBFs. Under additional assumptions, we also show how the harmonizable representation can be re-expressed as a moving average stochastic integral, thus answering an open problem described in H. Biermé et al. [Stochastic Processes Appl. 117, No. 3, 312–332 (2007; Zbl 1111.60033)].

MSC:

60G22 Fractional processes, including fractional Brownian motion
60G18 Self-similar stochastic processes
60G15 Gaussian processes

Citations:

Zbl 1111.60033

References:

[2] Biermé, H.; Estrade, A.; Kaj, I., Self-similar random fields and rescaled random balls models, J. Theoret. Probab., 23, 4, 1110-1141 (2010) · Zbl 1213.60096
[3] Biermé, H.; Meerschaert, M.; Scheffler, H.-P., Operator scaling stable random fields, Stochastic Process. Appl., 117, 312-332 (2007) · Zbl 1111.60033
[4] Biermé, H.; Lacaux, C., Hölder regularity for operator scaling stable random fields, Stochastic Process. Appl., 119, 7, 2222-2248 (2009) · Zbl 1183.60016
[5] Bonami, A.; Estrade, A., Anisotropic analysis of some Gaussian models, J. Fourier Anal. Appl., 9, 3, 215-236 (2003) · Zbl 1034.60038
[6] Clausel, M., Gaussian fields satisfying simultaneous operator scaling relations, (Recent Developments in Fractals and Related Fields (2010)), 327-341 · Zbl 1227.60067
[7] Clausel, M.; Vedel, B., Explicit construction of operator scaling Gaussian random fields, Fractals, 19, 01, 101-111 (2011) · Zbl 1233.60027
[9] Cohen, S.; Meerschaert, M.; Rosiński, J., Modeling and simulation with operator scaling, Stochastic Process. Appl., 120, 12, 2390-2411 (2010) · Zbl 1222.60033
[11] Didier, G.; Pipiras, V., Integral representations and properties of operator fractional Brownian motions, Bernoulli, 17, 1, 1-33 (2011) · Zbl 1284.60079
[12] Didier, G.; Pipiras, V., Exponents, symmetry groups and classification of operator fractional Brownian motions, J. Theoret. Probab., 25, 2, 353-395 (2012) · Zbl 1259.60041
[13] Hudson, W.; Mason, J., Operator-self-similar processes in a finite-dimensional space, Trans. Amer. Math. Soc., 273, 1, 281-297 (1982) · Zbl 0508.60044
[14] Laha, R. G.; Rohatgi, V. K., Operator self-similar stochastic processes in \(R^d\), Stochastic Process. Appl., 12, 1, 73-84 (1981) · Zbl 0472.60006
[15] Li, Y.; Xiao, Y., Multivariate operator-self-similar random fields, Stochastic Process. Appl., 121, 6, 1178-1200 (2011) · Zbl 1217.60040
[16] Maejima, M., Operator self-similar stable processes, Stochastic Process. Appl., 54, 139-163 (1994) · Zbl 0814.60032
[17] Maejima, M.; Mason, J., Operator-self-similar stable processes, Stochastic Process. Appl., 54, 139-163 (1994) · Zbl 0814.60032
[18] Meerschaert, M. M.; Scheffler, H.-P., (Limit Distributions for Sums of Independent Random Vectors: Heavy Tails in Theory and Practice. Limit Distributions for Sums of Independent Random Vectors: Heavy Tails in Theory and Practice, Wiley Series in Probability and Statistics (2001), John Wiley & Sons Inc.: John Wiley & Sons Inc. New York) · Zbl 0990.60003
[19] Yaglom, A., Some classes of random fields in \(n\)-dimensional space, related to stationary random processes, Theory Probab. Appl., 2, 273-320 (1957)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.