×

Hölder regularity for operator scaling stable random fields. (English) Zbl 1183.60016

Let \(E\) be real \(d\times d\) matrix whose eigenvalues have positive real parts. A scalar-valued random field \(\{X(x), x\in \mathbb{R}^d\}\) is called operator scaling for \(E\) and \(H>0\) if \[ \forall c>0, \{X(c^E(x)); x\in \mathbb{R}^d\}\mathop{=}\limits^{{\mathrm (fdd)}}\{c^HX(x); x\in\mathbb{R}^d\} \] where \(\mathop{=}\limits^{{\mathrm (fdd)}}\) means the equality of finite dimensional distributions. The sample path regularity of operator scaling \(\alpha\)-stable random fields is investigated. One of the tools is the change of polar coordinates with respect to the matrix \(E\). This notion is recalled in Section 3. For a Gaussian operator scaling random field \(X\) with stationary increments it gives \[ EX^2(x)=\tau^{2H}{E^{(x)}}E(X^2(l_E(x))) \] where \(\tau_E(x)\) is the radial part of \(X\) with respect to \(E\) and \(l_E(x)\) is its polar part. The Hölder regularity of sample paths of \(X\) follows from estimates of \(\tau_E(x)\) compared to \(\|x\|\). They are presented in section 3 as well. Section 2 discusses the harmonizable operator scaling random fields. Let \(\psi :\mathbb{R}^d\rightarrow[0,\infty)\) be a continuous function such that \[ \psi (c^{E^t}x)=c\psi (x) \quad \text{for \;all} \;c>0 \;\text{and}\;x\in \mathbb{R}^d. \] Let \(0<\alpha\leq 2\) and \(W_\alpha (d\xi)\) be a complex isotropic \(\alpha\)-stable random measure on \(\mathbb{R}^d\) with Lebesgue control measure. The random field \[ X_\alpha (x) =\mathfrak{R}\int_{\mathbb{R}^d}(e^{i(x,\xi)}-1)\psi (\xi)^{-1-q/\alpha}W_\alpha(d\xi), \quad x\in\mathbb{R}^d, q=\text{trace}(E), \] is called the harmonizable operator scaling stable random field. Some examples are presented.
In Section 4, a representation as LePage series of stochastic integrals with respect to an \(\alpha\)-stable random measure of \(\Lambda\) is presented if the control measure of \(\Lambda\) is finite, \(0<\alpha<2\). It is generalized in case of complex isotropic \(\alpha\)-stable random measure \(W_\alpha,\;0<\alpha<2\) with Lebesgue control measure.
By help of LePage representation of harmonizable field \(X_\alpha, (0<\alpha\leq 2)\) an upper bound for the modulus of continuity of \(X_\alpha\) and the critical Hölder regularity of its sample paths are considered in Section 5. In particular, if for eigenvector \(\Theta_j\) related to eigenvalue \(a_j\) of matrix \(E\) the critical Hölder exponent in direction \(\Theta_j\) is \(H_j=\frac{1}{a_j}\). Estimates of the Hausdorff and box dimensions for the graph of the field over a compact \(K\) are obtained as well.
In Section 6 the moving average operator scaling stable random field \[ Z_\alpha(x) = \int_{\mathbb{R}^d}\big(\varphi(x-y)^{1-q/\alpha}-\varphi(-y)^{1-q/\alpha}\big) M_\alpha(dy), \quad x\in \mathbb{R}^d \] is considered where \(q=\text{trace}(E), \varphi :\mathbb{R}^d\rightarrow[0,\infty)\) is a continuous \(E\)-homogeneous function and \(M_\alpha(dy)\) is an independently scattered \(S\alpha S\) random measure on \(\mathbb{R}^d\) with Lebesgue control measure. It is proved that sample paths of random field \(Z_\alpha, \;0<\alpha <2\) are almost surely unbounded on every open ball.
The Appendix contains the proofs of lemmas and propositions applied above.
The introduction contains short exact remarks on previous investigations in this field on various Gaussian and stable random fields including even applications in other sciences.

MSC:

60G17 Sample path properties
60G18 Self-similar stochastic processes
60G60 Random fields
60G52 Stable stochastic processes
60G15 Gaussian processes

References:

[1] Biermé, H.; Meerschaert, M. M.; Scheffler, H. P., Operator scaling stable random fields, Stochastic Process. Appl., 117, 3, 312-332 (2007) · Zbl 1111.60033
[2] Lévy Véhel, J., Fractals in Engineering: From Theory to Industrial Applications (1997), Springer: Springer New York
[3] Abry, P.; Goncalves, P.; Lévy Véhel, J., Lois d’échelle, fractales et ondelettes, vol. 1 (2002), Hermes · Zbl 1192.94003
[4] Samorodnitsky, G.; Taqqu, M. S., Stochastic models with infinite variance, (Stable non-Gaussian Random Processes. Stable non-Gaussian Random Processes, Stochastic Modeling (1994), Chapman & Hall: Chapman & Hall New York) · Zbl 0925.60027
[5] Willinger, W.; Paxson, V.; Taqqu, M. S., Self-similarity and heavy tails: Structural modeling of network traffic, (A Practical Guide to Heavy Tails (Santa Barbara, CA, 1995) (1998), Birkhäuser Boston, Boston: Birkhäuser Boston, Boston MA), 27-53 · Zbl 0926.90014
[6] Kolmogorov, A. N., Wienersche Spiralen und einige andere interessante Kurven in Hilbertsche Raum, C. R. (Dokl.) Acad. Sci. URSS, 26, 115-118 (1940) · Zbl 0022.36001
[7] Mandelbrot, B. B.; Van Ness, J., Fractional Brownian motion, fractional noises and applications, SIAM Rev., 10, 422-437 (1968) · Zbl 0179.47801
[8] S. Leger, Analyse stochastique de signaux multi-fractaux et estimations de paramètres, Ph.D. Thesis, Université d’Orléans. http://www.univ-orleans.fr/mapmo/publications/leger; S. Leger, Analyse stochastique de signaux multi-fractaux et estimations de paramètres, Ph.D. Thesis, Université d’Orléans. http://www.univ-orleans.fr/mapmo/publications/leger
[9] Bonami, A.; Estrade, A., Anisotropic analysis of some Gaussian models, J. Fourier Anal. Appl., 9, 3, 215-236 (2003) · Zbl 1034.60038
[10] Pecknold, S.; Lovejoy, S.; Schertzer, D.; Hooge, C.; Malouin, J. F., The simulation of universal multifractals, (Perdang, J. M.; Lejeune, A., Cellular Automata: Prospects in Astrophysical Applications (1993), World Scientific: World Scientific Singapore), 228-267 · Zbl 0926.74041
[11] Benson, D.; Meerschaert, M. M.; Bäumer, B.; Scheffler, H. P., Aquifer operator-scaling and the effect on solute mixing and dispersion, Water Res. Res., 42, 1-18 (2006)
[12] Kamont, A., On the fractional anisotropic wiener field, Probab. Math. Statist., 16, 85-98 (1996) · Zbl 0857.60046
[13] Mikosch, T.; Resnick, S.; Rootzén, H.; Stegeman, A., Is network traffic approximated by stable Lévy motion or fractional Brownian motion?, Ann. Appl. Probab., 12, 1, 23-68 (2002) · Zbl 1021.60076
[14] Kôno, N.; Maejima, M., Hölder continuity of sample paths of some self-similar stable processes, Tokyo J. Math., 14, 1 (1991) · Zbl 0728.60042
[15] Kôno, N., On the modulus of continuity of sample functions of gaussian processes, J. Math. Kyoto Univ., 10, 493-536 (1970) · Zbl 0205.44503
[16] Takashima, K., Sample path properties of ergodic self-similar processes, Osaka J. Math., 26, 1, 159-189 (1989) · Zbl 0719.60040
[17] Meerschaert, M. M.; Scheffler, H. P., Heavy tails in theory and practice, (Limit Distributions for Sums of Independent Random Vectors. Limit Distributions for Sums of Independent Random Vectors, Wiley Series in Probability and Statistics (2001), John Wiley & Sons Inc.: John Wiley & Sons Inc. New York) · Zbl 0990.60003
[18] LePage, R., Conditional moments for coordinates of stable vectors, (Probability Theory on Vector Spaces, IV (Łańcut, 1987). Probability Theory on Vector Spaces, IV (Łańcut, 1987), Lecture Notes in Math., vol. 1391 (1989), Springer: Springer Berlin), 148-163 · Zbl 0678.60021
[19] LePage, R., Multidimensional infinitely divisible variables and processes. II, (Probability in Banach Spaces, III (Medford, MA, 1980). Probability in Banach Spaces, III (Medford, MA, 1980), Lecture Notes in Math., vol. 860 (1981), Springer: Springer Berlin), 279-284 · Zbl 0469.60012
[20] Rosiński, J., On series representations of infinitely divisible random vectors, Ann. Probab., 18, 1, 405-430 (1990) · Zbl 0701.60004
[21] Rosiński, J., On path properties of certain infinitely divisible processes, Stochastic Process. Appl., 33, 1, 73-87 (1989) · Zbl 0715.60051
[22] Adler, R. J., The Geometry of Random Field (1981), John Wiley & Sons · Zbl 0478.60059
[23] Mason, J. D.; Xiao, Y., Sample path properties of operator-self-similar Gaussian random fields, Teor. Veroyatnost. Primenen., 46, 1, 94-116 (2001) · Zbl 0993.60039
[24] Hirsch, M. W.; Smale, S., (Differential Equations, Dynamical Systems, and Linear Algebra. Differential Equations, Dynamical Systems, and Linear Algebra, Pure and Applied Mathematics, vol. 60 (1974), Academic Press: Academic Press New York, London) · Zbl 0309.34001
[25] Rosiński, J., Series representations of Lévy processes from the perspective of point processes, (Lévy Processes (2001), Birkhäuser Boston: Birkhäuser Boston Boston MA), 401-415 · Zbl 0985.60048
[26] Kôno, N.; Maejima, M., Self-similar stable processes with stationary increments, (Stable Processes and Related Topics (Ithaca, NY, 1990). Stable Processes and Related Topics (Ithaca, NY, 1990), Progr. Probab., vol. 25 (1991), Birkhäuser Boston, Boston: Birkhäuser Boston, Boston MA), 275-295 · Zbl 0728.60041
[27] Marcus, M. B.; Pisier, G., Characterizations of almost surely continuous \(p\)-stable random Fourier series and strongly stationary processes, Acta Math., 152, 3-4, 245-301 (1984) · Zbl 0547.60047
[28] Karatzas, I.; Shreve, E., Brownian Motion and Stochastic Calculus (1998), Springer-Verlag · Zbl 0638.60065
[29] M. Clausel, Quelques notions d’irrégularité uniforme et ponctuelles: le point de vue ondelettes. Ph.D. Thesis, Université Paris XII, 2008; M. Clausel, Quelques notions d’irrégularité uniforme et ponctuelles: le point de vue ondelettes. Ph.D. Thesis, Université Paris XII, 2008
[30] Falconer, K., (Fractal Geometry. Fractal Geometry, Mathematical Foundations and Applications (2003), John Wiley & Sons Inc., Hoboken: John Wiley & Sons Inc., Hoboken NJ) · Zbl 1060.28005
[31] Benassi, A.; Cohen, S.; Istas, J., Local self-similarity and the Hausdorff dimension, C.R. Acad Sci. Paris Ser.I, 336, 3, 267-272 (2003) · Zbl 1023.60043
[32] Ayache, A.; Roueff, F., A Fourier formulation of the Frostman criterion for random graphs and its applications to wavelet series, Appl. Comput. Harmon. Anal., 14, 75-82 (2003) · Zbl 1039.42029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.