×

Oracle inequalities for the lasso in the Cox model. (English) Zbl 1292.62135

Summary: We study the absolute penalized maximum partial likelihood estimator in sparse, high-dimensional Cox proportional hazards regression models where the number of time-dependent covariates can be larger than the sample size. We establish oracle inequalities based on natural extensions of the compatibility and cone invertibility factors of the Hessian matrix at the true regression coefficients. Similar results based on an extension of the restricted eigenvalue can be also proved by our method. However, the presented oracle inequalities are sharper since the compatibility and cone invertibility factors are always greater than the corresponding restricted eigenvalue. In the Cox regression model, the Hessian matrix is based on time-dependent covariates in censored risk sets, so that the compatibility and cone invertibility factors, and the restricted eigenvalue as well, are random variables even when they are evaluated for the Hessian at the true regression coefficients. Under mild conditions, we prove that these quantities are bounded from below by positive constants for time-dependent covariates, including cases where the number of covariates is of greater order than the sample size. Consequently, the compatibility and cone invertibility factors can be treated as positive constants in our oracle inequalities.

MSC:

62N02 Estimation in survival analysis and censored data
62G05 Nonparametric estimation

Software:

PDCO

References:

[1] Andersen, P. K. and Gill, R. D. (1982). Cox’s regression model for counting processes: A large sample study. Ann. Statist. 10 1100-1120. · Zbl 0526.62026 · doi:10.1214/aos/1176345976
[2] Azuma, K. (1967). Weighted sums of certain dependent random variables. Tôhoku Math. J. (2) 19 357-367. · Zbl 0178.21103 · doi:10.2748/tmj/1178243286
[3] Bickel, P. J., Ritov, Y. and Tsybakov, A. B. (2009). Simultaneous analysis of lasso and Dantzig selector. Ann. Statist. 37 1705-1732. · Zbl 1173.62022 · doi:10.1214/08-AOS620
[4] Bradic, J., Fan, J. and Jiang, J. (2011). Regularization for Cox’s proportional hazards model with NP-dimensionality. Ann. Statist. 39 3092-3120. · Zbl 1246.62202 · doi:10.1214/11-AOS911
[5] Bunea, F., Tsybakov, A. and Wegkamp, M. (2007). Sparsity oracle inequalities for the Lasso. Electron. J. Stat. 1 169-194. · Zbl 1146.62028 · doi:10.1214/07-EJS008
[6] Chen, S. S., Donoho, D. L. and Saunders, M. A. (1998). Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20 33-61. · Zbl 0919.94002 · doi:10.1137/S1064827596304010
[7] Cox, D. R. (1972). Regression models and life-tables (with discussion). J. R. Stat. Soc. Ser. B Stat. Methodol. 34 187-220. · Zbl 0243.62041
[8] de la Peña, V. H. (1999). A general class of exponential inequalities for martingales and ratios. Ann. Probab. 27 537-564. · Zbl 0942.60004 · doi:10.1214/aop/1022677271
[9] Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004). Least angle regression. Ann. Statist. 32 407-451. · Zbl 1091.62054 · doi:10.1214/009053604000000067
[10] Fan, J. (1997). Comments on “Wavelets in statistics: A review,” by A. Antoniadis. J. Amer. Statist. Assoc. 6 131-138.
[11] Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc. 96 1348-1360. · Zbl 1073.62547 · doi:10.1198/016214501753382273
[12] Fan, J. and Li, R. (2002). Variable selection for Cox’s proportional hazards model and frailty model. Ann. Statist. 30 74-99. · Zbl 1012.62106 · doi:10.1214/aos/1015362185
[13] Fan, J. and Peng, H. (2004). Nonconcave penalized likelihood with a diverging number of parameters. Ann. Statist. 32 928-961. · Zbl 1092.62031 · doi:10.1214/009053604000000256
[14] Gaïffas, S. and Guilloux, A. (2012). High-dimensional additive hazards models and the Lasso. Electron. J. Stat. 6 522-546. · Zbl 1274.62655 · doi:10.1214/12-EJS681
[15] Greenshtein, E. and Ritov, Y. (2004). Persistence in high-dimensional linear predictor selection and the virtue of overparametrization. Bernoulli 10 971-988. · Zbl 1055.62078 · doi:10.3150/bj/1106314846
[16] Gui, J. and Li, H. (2005). Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data. Bioinformatics 21 3001-3008.
[17] Hjort, N. L. and Pollard, D. (1993). Asymptotics for minimisers of convex processes. Preprint, Yale Univ.
[18] Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 13-30. · Zbl 0127.10602 · doi:10.2307/2282952
[19] Huang, J. and Zhang, C.-H. (2012). Estimation and selection via absolute penalized convex minimization and its multistage adaptive applications. J. Mach. Learn. Res. 13 1839-1864. · Zbl 1435.62091
[20] Koltchinskii, V. (2009). The Dantzig selector and sparsity oracle inequalities. Bernoulli 15 799-828. · Zbl 1452.62486 · doi:10.3150/09-BEJ187
[21] Kong, S. and Nan, B. (2012). Non-asymptotic oracle inequalities for the high-dimensional Cox regression via Lasso. Available at . 1204.1992
[22] Lemler, S. (2012). Oracle inequalities for the Lasso for the conditional hazard rate in a high-dimensional setting. Available at . 1206.5628
[23] Meinshausen, N. and Bühlmann, P. (2006). High-dimensional graphs and variable selection with the lasso. Ann. Statist. 34 1436-1462. · Zbl 1113.62082 · doi:10.1214/009053606000000281
[24] Meinshausen, N. and Yu, B. (2009). Lasso-type recovery of sparse representations for high-dimensional data. Ann. Statist. 37 246-270. · Zbl 1155.62050 · doi:10.1214/07-AOS582
[25] Negahban, S., Ravikumar, P., Wainwright, M. and Yu, B. (2009). A unified framework for high-dimensional analysis of \(M\)-estimators with decomposable regularizers. In Proceedings of the NIPS Conference . Vancouver, Canada. · Zbl 1331.62350
[26] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 58 267-288. · Zbl 0850.62538
[27] Tibshirani, R. (1997). The lasso method for variable selection in the Cox model. Stat. Med. 16 385-395.
[28] Tsiatis, A. A. (1981). A large sample study of Cox’s regression model. Ann. Statist. 9 93-108. · Zbl 0455.62019 · doi:10.1214/aos/1176345335
[29] van de Geer, S. A. (2007). The deterministic Lasso. Technical Report 140, ETH Zürich, Switzerland. Available at .
[30] van de Geer, S. A. (2008). High-dimensional generalized linear models and the lasso. Ann. Statist. 36 614-645. · Zbl 1138.62323 · doi:10.1214/009053607000000929
[31] van de Geer, S. A. and Bühlmann, P. (2009). On the conditions used to prove oracle results for the Lasso. Electron. J. Stat. 3 1360-1392. · Zbl 1327.62425 · doi:10.1214/09-EJS506
[32] Ye, F. and Zhang, C.-H. (2010). Rate minimaxity of the Lasso and Dantzig selector for the \(\ell_{q}\) loss in \(\ell_{r}\) balls. J. Mach. Learn. Res. 11 3519-3540. · Zbl 1242.62074
[33] Zhang, T. (2009). On the consistency of feature selection using greedy least squares regression. J. Mach. Learn. Res. 10 555-568. · Zbl 1235.62096
[34] Zhang, C.-H. and Huang, J. (2008). The sparsity and bias of the LASSO selection in high-dimensional linear regression. Ann. Statist. 36 1567-1594. · Zbl 1142.62044 · doi:10.1214/07-AOS520
[35] Zhang, H. H. and Lu, W. (2007). Adaptive Lasso for Cox’s proportional hazards model. Biometrika 94 691-703. · Zbl 1135.62083 · doi:10.1093/biomet/asm037
[36] Zhang, C. H. and Zhang, T. (2012). A general theory of concave regularization for high dimensional sparse estimation problems. Statist. Sci. 27 576-593. · Zbl 1331.62353 · doi:10.1214/12-STS399
[37] Zhao, P. and Yu, B. (2006). On model selection consistency of Lasso. J. Mach. Learn. Res. 7 2541-2563. · Zbl 1222.62008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.