×

Variable selection for Cox’s proportional hazards model and frailty model. (English) Zbl 1012.62106

Summary: A class of variable selection procedures for parametric models via nonconcave penalized likelihood was proposed by J. Fan and R. Li [J. Am. Stat. Assoc. 96, No. 456, 1348-1360 (2001)]. It has been shown there that the resulting procedures perform as well as if the subset of significant variables were known in advance. Such a property is called an oracle property. The proposed procedures were illustrated in the context of linear regression, robust linear regression and generalized linear models. In this paper, the nonconcave penalized likelihood approach is extended further to the Cox proportional hazards model and the Cox proportional hazards frailty model, two commonly used semi-parametric models in survival analysis. As a result, new variable selection procedures for these two commonly-used models are proposed.
It is demonstrated how the rates of convergence depend on the regularization parameter in the penalty function. Further, with a proper choice of the regularization parameter and the penalty function, the proposed estimators possess an oracle property. Standard error formulae are derived and their accuracies are empirically tested. Simulation studies show that the proposed procedures are more stable in prediction and more effective in computation than the best subset variable selection, and they reduce model complexity as effectively as the best subset variable selection. Compared with the LASSO, which is the penalized likelihood method with the \(L_1\) -penalty, proposed by R. Tibshirani [J. R. Stat. Soc., Ser. B 58, No. 1, 267-288 (1996)], the newly proposed approaches have better theoretic properties and finite sample performance.

MSC:

62N02 Estimation in survival analysis and censored data
62F12 Asymptotic properties of parametric estimators
62M99 Inference from stochastic processes
Full Text: DOI

References:

[1] ANDERSEN, P. K, BORGAN, Ø., GILL, R. D. and KEIDING, N. (1993). Statistical Models Based on Counting Processes. Springer, New York. · Zbl 0769.62061
[2] ANDERSEN, P. K. and GILL, R. D. (1982). Cox’s regression model for counting processes: a large sample study. Ann. Statist. 10 1100-1120. · Zbl 0526.62026 · doi:10.1214/aos/1176345976
[3] ANTONIADIS, A. (1997). Wavelets in Statistics: A review (with discussion). J. Italian Statist. Assoc. 6 97-144.
[4] ANTONIADIS, A. and FAN, J. (2001). Regularization of wavelet approximations (with discussion). J. Amer. Statist. Assoc. 96 939-967. JSTOR: · Zbl 1072.62561 · doi:10.1198/016214501753208942
[5] BICKEL, P. J. (1975). One-step Huber estimates in the linear model. J. Amer. Statist. Assoc. 70 428- 434. JSTOR: · Zbl 0322.62038 · doi:10.2307/2285834
[6] BREIMAN, L. (1996). Heuristics of instability and stabilization in model selection. Ann. Statist. 24 2350-2383. · Zbl 0867.62055 · doi:10.1214/aos/1032181158
[7] COX, D. R. (1975). Partial likelihood. Biometrika 62 269-276. JSTOR: · Zbl 0312.62002 · doi:10.1093/biomet/62.2.269
[8] CRAVEN, P. and WAHBA, G. (1979). Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation. Numer. Math. 31 377-403. · Zbl 0377.65007 · doi:10.1007/BF01404567
[9] DONOHO, D. L. and JOHNSTONE, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika 81 425-455. JSTOR: · Zbl 0815.62019 · doi:10.1093/biomet/81.3.425
[10] FAN, J. (1997). Comment on ”Wavelets in statistics: a review” by A. Antoniadis. J. Italian Statist. Assoc. 6 131-138.
[11] FAN, J. and LI, R. (2001a). Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc. 96 1348-1360. JSTOR: · Zbl 1073.62547 · doi:10.1198/016214501753382273
[12] FAN, J. and LI, R. (2001b). Variable selection for Cox’s proportional hazards model and frailty model. Institute of Statistic Mimeo Series #2372, Dept. Statistics, Univ. North Carolina, Chapel Hill.
[13] FARAGGI, D. and SIMON, R. (1998). Bayesian variable selection method for censored survival data. Biometrics 54 1475-1485. JSTOR: · Zbl 1058.62511 · doi:10.2307/2533672
[14] KNIGHT, K. and FU, W. (2000). Asymptotics for lasso-type estimators. Ann. Statist. 28 1356-1378. · Zbl 1105.62357 · doi:10.1214/aos/1015957397
[15] LEHMANN, E. L. (1983). Theory of Point Estimation. Wiley, New York. · Zbl 0522.62020
[16] LI, K. C. (1987). Asymptotic optimality for Cp, Cl, cross-validation and generalized cross validation: discrete index set. Ann. Statist. 15 958-975. · Zbl 0653.62037 · doi:10.1214/aos/1176350486
[17] LINDLEY, D. V. (1968). The choice of variables in multiple regression (with discussion). J. Roy. Statist. Soc. Ser. B 30 31-66. JSTOR: · Zbl 0155.26702
[18] MORRIS, C. N., NORTON, E. C. and ZHOU, X. H. (1994). Parametric duration analysis of nursing home usage. In Case Studies in Biometry (N. Lange, L. Ryan, L. Billard, D. Brillinger, L. Conquest and J. Greenhouse, eds.) 231-248. Wiley, New York.
[19] MURPHY, S. A. and VAN DER VAART, A. W. (1999). Observed information in semiparametric models. Bernoulli 5 381-412. · Zbl 0954.62036 · doi:10.2307/3318710
[20] MURPHY, S. A. and VAN DER VAART, A. W. (2000). On profile likelihood. J. Amer. Statist. Assoc. 95 449-465. JSTOR: · Zbl 0995.62033 · doi:10.2307/2669386
[21] NIELSEN, G. G., GILL, R. D., ANDERSEN, P. K. and SØ RENSEN, T. I. A. (1992). A counting process approach to maximum likelihood estimator in frailty models. Scand. J. Statist. 19 25-43. · Zbl 0747.62093
[22] PARNER, E. (1998). Asymptotic theory for the correlated gamma-frailty model. Ann. Statist. 26 183- 214. · Zbl 0934.62101 · doi:10.1214/aos/1030563982
[23] ROBINSON, P. M. (1988). The stochastic difference between econometrics and statistics. Econometrica 56 531-548. JSTOR: · Zbl 0722.62067 · doi:10.2307/1911699
[24] SINHA, D. (1998). Posterior likelihood methods for multivariate survival data. Biometrics 54 1463- 1474. · Zbl 1058.62653 · doi:10.2307/2533671
[25] TIBSHIRANI, R. J. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58 267-288. JSTOR: · Zbl 0850.62538
[26] TIBSHIRANI, R. J. (1997). The lasso method for variable selection in the Cox model. Statistics in Medicine 16 385-395.
[27] WAHBA, G. (1985). A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem. Ann. Statist. 13 1378-1402. · Zbl 0596.65004 · doi:10.1214/aos/1176349743
[28] SHATIN, HONG KONG E-MAIL: jfan@sta.cuhk.edu.hk DEPARTMENT OF STATISTICS PENNSYLVANIA STATE UNIVERSITY UNIVERSITY PARK, PENNSYLVANIA 16802-2111 E-MAIL: rli@stat.psu.edu
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.