×

Phase transitions between Reissner-Nordstrom and dilatonic black holes in 4D AdS spacetime. (English) Zbl 1271.83043

Summary: We study Einstein-Maxwell-dilaton gravity models in four-dimensional anti de Sitter (AdS) spacetime which admit the Reissner-Nordstrom (RN) black hole solution. We show that below a critical temperature the AdS-RN solution becomes unstable against scalar perturbations and the gravitational system undergoes a phase transition. We show using numerical calculations that the new phase is a charged dilatonic black hole. Using the AdS/CFT correspondence we discuss the phase transition in the dual field theory both for non-vanishing temperatures and in the extremal limit. The extremal solution has a Lifshitz scaling symmetry. We discuss the optical conductivity in the new dual phase and find interesting behavior at low frequencies where it shows a “Drude peak”. The resistivity varies with temperature in a non-monotonic way and displays a minimum at low temperatures which is reminiscent of the celebrated Kondo effect.

MSC:

83C57 Black holes
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83C45 Quantization of the gravitational field
82B30 Statistical thermodynamics
82B26 Phase transitions (general) in equilibrium statistical mechanics
81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)

References:

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys.2 (1998) 231 [Int. J. Theor. Phys.38 (1999) 1113] [hep-th/9711200] [SPIRES]. · Zbl 0914.53047
[2] D.T. Son and A.O. Starinets, Viscosity, Black Holes and Quantum Field Theory, Ann. Rev. Nucl. Part. Sci.57 (2007) 95 [arXiv:0704.0240] [SPIRES]. · doi:10.1146/annurev.nucl.57.090506.123120
[3] D. Mateos, String Theory and Quantum Chromodynamics, Class. Quant. Grav.24 (2007) S713 [arXiv:0709.1523] [SPIRES]. · Zbl 1128.81023 · doi:10.1088/0264-9381/24/21/S01
[4] S. Sachdev and M. Mueller, Quantum criticality and black holes, arXiv:0810.3005 [SPIRES].
[5] C.P. Herzog, Lectures on Holographic Superfluidity and Superconductivity, J. Phys.A 42 (2009) 343001 [arXiv:0904.1975] [SPIRES]. · Zbl 1180.82218
[6] S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav.26 (2009) 224002 [arXiv:0903.3246] [SPIRES]. · Zbl 1181.83003 · doi:10.1088/0264-9381/26/22/224002
[7] J. McGreevy, Holographic duality with a view toward many-body physics, arXiv:0909.0518 [SPIRES]. · Zbl 1216.81118
[8] D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence: Recipe and applications, JHEP09 (2002) 042 [hep-th/0205051] [SPIRES]. · doi:10.1088/1126-6708/2002/09/042
[9] W. Israel, Event horizons in static vacuum space-times, Phys. Rev.164 (1967) 1776 [SPIRES]. · doi:10.1103/PhysRev.164.1776
[10] S.S. Gubser and S.S. Pufu, The gravity dual of a p-wave superconductor, JHEP11 (2008) 033 [arXiv:0805.2960] [SPIRES]. · doi:10.1088/1126-6708/2008/11/033
[11] S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP12 (2008) 015 [arXiv:0810.1563] [SPIRES]. · Zbl 1329.81390 · doi:10.1088/1126-6708/2008/12/015
[12] S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett.101 (2008) 031601 [arXiv:0803.3295] [SPIRES]. · Zbl 1404.82086 · doi:10.1103/PhysRevLett.101.031601
[13] G.W. Gibbons and K.-i. Maeda, Black Holes and Membranes in Higher Dimensional Theories with Dilaton Fields, Nucl. Phys.B 298 (1988) 741 [SPIRES]. · doi:10.1016/0550-3213(88)90006-5
[14] D. Garfinkle, G.T. Horowitz and A. Strominger, Charged black holes in string theory, Phys. Rev.D 43 (1991) 3140 [SPIRES].
[15] S. Monni and M. Cadoni, Dilatonic black holes in a S-duality model, Nucl. Phys.B 466 (1996) 101 [hep-th/9511067] [SPIRES]. · Zbl 1002.81527 · doi:10.1016/0550-3213(96)00090-9
[16] M.J. Duff and J.T. Liu, Anti-de Sitter black holes in gauged N = 8 supergravity, Nucl. Phys.B 554 (1999) 237 [hep-th/9901149] [SPIRES]. · Zbl 0951.83060 · doi:10.1016/S0550-3213(99)00299-0
[17] S.S. Gubser and F.D. Rocha, Peculiar properties of a charged dilatonic black hole in AdS5, Phys. Rev.D 81 (2010) 046001 [arXiv:0911.2898] [SPIRES].
[18] S.S. Gubser, Phase transitions near black hole horizons, Class. Quant. Grav.22 (2005) 5121 [hep-th/0505189] [SPIRES]. · Zbl 1087.83044 · doi:10.1088/0264-9381/22/23/013
[19] S.S. Gubser and I. Mitra, Instability of charged black holes in anti-de Sitter space, hep-th/0009126 [SPIRES]. · Zbl 1051.83516
[20] S.A. Hartnoll and C.P. Herzog, Impure AdS/CFT, Phys. Rev.D 77 (2008) 106009 [arXiv:0801.1693] [SPIRES].
[21] S. Kachru, X. Liu and M. Mulligan, Gravity Duals of Lifshitz-like Fixed Points, Phys. Rev.D 78 (2008) 106005 [arXiv:0808.1725] [SPIRES].
[22] K. Goldstein, S. Kachru, S. Prakash and S.P. Trivedi, Holography of Charged Dilaton Black Holes, arXiv:0911.3586 [SPIRES]. · Zbl 1290.83038
[23] G.T. Horowitz and M.M. Roberts, Zero Temperature Limit of Holographic Superconductors, JHEP11 (2009) 015 [arXiv:0908.3677] [SPIRES]. · doi:10.1088/1126-6708/2009/11/015
[24] S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, arXiv:0912.1061 [SPIRES]. · Zbl 1272.83098
[25] P. Breitenlohner and D.Z. Freedman, Positive Energy in anti-de Sitter Backgrounds and Gauged Extended Supergravity, Phys. Lett.B 115 (1982) 197 [SPIRES].
[26] G. Dotti and R.J. Gleiser, Gravitational instability of Einstein-Gauss-Bonnet black holes under tensor mode perturbations, Class. Quant. Grav.22 (2005) L1 [gr-qc/0409005] [SPIRES]. · Zbl 1060.83035 · doi:10.1088/0264-9381/22/1/L01
[27] E. Berti, V. Cardoso and A.O. Starinets, Quasinormal modes of black holes and black branes, Class. Quant. Grav.26 (2009) 163001 [arXiv:0905.2975] [SPIRES]. · Zbl 1173.83001 · doi:10.1088/0264-9381/26/16/163001
[28] S. Mignemi, Exact solutions of dilaton gravity with (anti)-de Sitter asymptotics, arXiv:0907.0422 [SPIRES]. · Zbl 1284.83133
[29] I.Z. Stefanov, S.S. Yazadjiev and M.D. Todorov, Phases of 4D Scalar-tensor black holes coupled to Born-Infeld nonlinear electrodynamics, Mod. Phys. Lett.A 23 (2008) 2915 [arXiv:0708.4141] [SPIRES]. · Zbl 1172.83333
[30] G.T. Horowitz and M.M. Roberts, Holographic Superconductors with Various Condensates, Phys. Rev.D 78 (2008) 126008 [arXiv:0810.1077] [SPIRES].
[31] I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys.B 556 (1999) 89 [hep-th/9905104] [SPIRES]. · Zbl 0958.81134 · doi:10.1016/S0550-3213(99)00387-9
[32] T. Hertog and G.T. Horowitz, Towards a big crunch dual, JHEP07 (2004) 073 [hep-th/0406134] [SPIRES]. · doi:10.1088/1126-6708/2004/07/073
[33] M. Ammon, J. Erdmenger, M. Kaminski and P. Kerner, Flavor Superconductivity from Gauge/Gravity Duality, JHEP10 (2009) 067 [arXiv:0903.1864] [SPIRES]. · doi:10.1088/1126-6708/2009/10/067
[34] R.-G. Cai and Y.-Z. Zhang, Black plane solutions in four-dimensional spacetimes, Phys. Rev.D 54 (1996) 4891 [gr-qc/9609065] [SPIRES]. · doi:10.1103/PhysRevD.54.4891
[35] R.-G. Cai, J.-Y. Ji and K.-S. Soh, Topological dilaton black holes, Phys. Rev.D 57 (1998) 6547 [gr-qc/9708063] [SPIRES].
[36] C. Charmousis, B. Gouteraux and J. Soda, Einstein-Maxwell-Dilaton theories with a Liouville potential, Phys. Rev.D 80 (2009) 024028 [arXiv:0905.3337] [SPIRES].
[37] K. Maeda, M. Natsuume and T. Okamura, Universality class of holographic superconductors, Phys. Rev.D 79 (2009) 126004 [arXiv:0904.1914] [SPIRES].
[38] S.S. Gubser and F.D. Rocha, The gravity dual to a quantum critical point with spontaneous symmetry breaking, Phys. Rev. Lett.102 (2009) 061601 [arXiv:0807.1737] [SPIRES]. · doi:10.1103/PhysRevLett.102.061601
[39] S.-J. Rey, String theory on thin semiconductors: Holographic realization ofFermi points and surfaces, Prog. Theor. Phys. Suppl.177 (2009) 128 [arXiv:0911.5295] [SPIRES]. · Zbl 1173.81334 · doi:10.1143/PTPS.177.128
[40] S.-S. Lee, A Non-Fermi Liquid from a Charged Black Hole: A CriticalFermi Ball, Phys. Rev.D 79 (2009) 086006 [arXiv:0809.3402] [SPIRES].
[41] H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, arXiv:0903.2477 [SPIRES].
[42] M. Cubrovic, J. Zaanen and K. Schalm, String Theory, Quantum Phase Transitions and the Emergent Fermi-Liquid, Science325 (2009) 439 [arXiv:0904.1993] [SPIRES]. · Zbl 1226.81177 · doi:10.1126/science.1174962
[43] T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality,Fermi surfaces and AdS2, arXiv:0907.2694 [SPIRES].
[44] F. Aprile and J.G. Russo, Models of Holographic superconductivity, Phys. Rev.D 81 (2010) 026009 [arXiv:0912.0480] [SPIRES].
[45] J.P. Gauntlett, J. Sonner and T. Wiseman, Holographic superconductivity in M-theory, Phys. Rev. Lett.103 (2009) 151601 [arXiv:0907.3796] [SPIRES]. · doi:10.1103/PhysRevLett.103.151601
[46] S.S. Gubser, S.S. Pufu and F.D. Rocha, Quantum critical superconductors in string theory and M-theory, Phys. Lett.B 683 (2010) 201 [arXiv:0908.0011] [SPIRES].
[47] S.S. Gubser, C.P. Herzog, S.S. Pufu and T. Tesileanu, Superconductors from Superstrings, Phys. Rev. Lett.103 (2009) 141601 [arXiv:0907.3510] [SPIRES]. · doi:10.1103/PhysRevLett.103.141601
[48] J. Gauntlett, J. Sonner and T. Wiseman, Quantum Criticality and Holographic Superconductors in M-theory, JHEP02 (2010) 060 [arXiv:0912.0512] [SPIRES]. · Zbl 1270.81171 · doi:10.1007/JHEP02(2010)060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.