×

Absence of wandering domains for some real entire functions with bounded singular sets. (English) Zbl 1291.37064

The authors consider \(f: \mathbb{C} \to \mathbb{C}\) an entire function, \(S(f)\) the set of singular values of \(f\), \(B=\{ f \text{ transcendental entire function: } S(f) \text{ is bounded }\}\), \(B_{\mathrm{real}} = \{f \in B : f \text{ is real }\}\), \(B^{*}_{\mathrm{real}} = \{ f \in B_{\mathrm{real}}: f\) has real singular values\(\}\) and a geometric condition, defined in the article as the “sector condition”.
The authors give a first result which is stated as follows:
Let \(f \in B\) be a function which \(f^n|_{S(f)} \to \infty\) uniformly. Let \(A \subset \mathbb{C}\) be a closed set with \((S(f) \cap f(A)) \subset A\) such that all conneceted components of \(A\) are unbounded. Suppose that there exists \(\epsilon >0\) and \(c \in (0,1)\) with the following property: if \(z \in A\) is sufficiently large and \(w \in \mathbb{C}\) satisfies \(|w - z| < c| z|\), then \(\mathrm{dist}(f(w), S(f)) >\epsilon\). Then \(f\) has no wandering domains.
Other important result of the paper is that if \(f \in B^{*}_{\mathrm{real}}\) satisfies the (real) sector condition, then \(f\) has no wandering domains. This result includes all maps of the form \(z \to \frac {\lambda\sinh(z)}{z} + a\), with \(\lambda, a \in \mathbb{R}\), \(\lambda \neq 0\).
As special case of the results above the authors give a short, elementary and non-technical proof of \(J(e^z) = \mathbb{C}\). Furthermore, the authors extend a result of W. Bergweiler [Math. Proc. Camb. Philos. Soc. 117, No. 3, 525–532 (1995; Zbl 0836.30016)] concerning Baker domains of entire functions and the relation to the postsingular set to the case of meromorphic functions.

MSC:

37F10 Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets
30D05 Functional equations in the complex plane, iteration and composition of analytic functions of one complex variable
30F45 Conformal metrics (hyperbolic, Poincaré, distance functions)

Citations:

Zbl 0836.30016

References:

[1] Bergweiler, W.: Iteration of meromorphic functions. Bull. Am. Math. Soc. (N.S.) 29(2), 151-188 (1993) · Zbl 0791.30018 · doi:10.1090/S0273-0979-1993-00432-4
[2] Bergweiler, W.: Invariant domains and singularities. Math. Proc. Cambridge Philos. Soc. 117(3), 525-532 (1995) · Zbl 0836.30016 · doi:10.1017/S0305004100073345
[3] Brannan, D.A., Hayman, W.K.: Research problems in complex analysis. Bull. London Math. Soc. 21, 1-35 (1989) · Zbl 0695.30001 · doi:10.1112/blms/21.1.1
[4] Bergweiler, W., Haruta, M., Kriete, H., Meier, H.G., Terglane, N.: On the limit functions of iterates in wandering domains. Ann. Acad. Sci. Fenn. Ser A I Math. 18, 369-375 (1993) · Zbl 0793.30022
[5] Beardon, A.F., Minda, D.: The hyperbolic metric and geometric function theory. In: Quasiconformal Mappings and their Applications, Narosa, New Delhi, pp. 9-56 (2007) · Zbl 1208.30001
[6] Bonfert, P.: On iteration in planar domains. Michigan Math. J. 44(1), 47-68 (1997) · Zbl 0884.30021 · doi:10.1307/mmj/1029005620
[7] Baker, I.N., Rippon, P.J.: Iteration of exponential functions. Ann. Acad. Sci. Fenn. Ser. A I Math. 9, 49-77 (1984) · Zbl 0558.30029 · doi:10.5186/aasfm.1984.0903
[8] Eremenko, A.E., Lyubich M.Yu.: Examples of entire functions with pathological dynamics. J. London Math. Soc. (2) 36(3), 458-468 (1987) · Zbl 0601.30033
[9] Eremenko, A.E., Lyubich, MYu.: Dynamical properties of some classes of entire functions. Ann. Inst. Fourier Grenoble 42(4), 989-1020 (1992) · Zbl 0735.58031 · doi:10.5802/aif.1318
[10] Epstein, A.L.: Towers of finite type complex analytic maps. PhD thesis, City University of New York (1993) · Zbl 1214.37036
[11] Epstein, A.L.: Dynamics of finite type complex analytic maps, Manuscript (1997) · Zbl 0466.30019
[12] Fatou, P.: Sur l’íteration des fonctions transcendantes entières. Acta Math. 47, 337-370 (1926) · JFM 52.0309.01 · doi:10.1007/BF02559517
[13] Keen, L., Lakic, N.: Hyperbolic geometry from a local viewpoint. In: London Mathematical Society Student Texts, vol. 68. Cambridge University Press, Cambridge (2007) · Zbl 1190.30001
[14] Kozlovski, O., Shen W., van Strien S.: Density of hyperbolicity in dimension one. Ann. of Math. (2) 166(1), 145-182 (2007) · Zbl 1138.37013
[15] Misiurewicz, M.: On iterates of \[e^z\] ez. Ergodic Theory Dyn. Syst. 1(1), 103-106 (1981) · Zbl 0466.30019 · doi:10.1017/S014338570000119X
[16] Rempe, L.: Hyperbolic dimension and radial Julia sets of transcendental functions. Proc. Am. Math. Soc. 137(4), 1411-1420 (2009) · Zbl 1214.37036 · doi:10.1090/S0002-9939-08-09650-0
[17] Rempe, L.: Rigidity of escaping dynamics for transcendental entire functions. Acta Math. 203(2), 235-267 (2009) · Zbl 1226.37027 · doi:10.1007/s11511-009-0042-y
[18] Rempe-Gillen, L., van Strien, S.: Density of hyperbolicity for classes of real transcendental entire functions and circle maps, Preprint (2010). arXiv:math.DS/1005.4627 · Zbl 1332.37034
[19] Rippon, P.J.: Baker domains of meromorphic functions. Ergodic Theory Dyn. Syst. 26(4), 1225-1233 (2006) · Zbl 1101.37034 · doi:10.1017/S0143385706000162
[20] Rempe, L., Rippon, P.J.: Exotic Baker and wandering domains for Ahlfors islands maps. J. Anal. Math. 117, 297-319 (2012) · Zbl 1285.37013 · doi:10.1007/s11854-012-0023-5
[21] Rottenfußer, G., Rückert, Johannes, Rempe, L., Schleicher, D.: Dynamic rays of bounded-type entire functions. Ann. Math. (2) 173(1), 77-125 (2011) · Zbl 1232.37025 · doi:10.4007/annals.2011.173.1.3
[22] Sullivan, D.: Quasiconformal homeomorphisms and dynamics I, solution of the Fatou-Julia problem on wandering domains. Ann. Math. 122, 408-418 (1985) · Zbl 0589.30022 · doi:10.2307/1971308
[23] Schleicher, D., Zimmer, J.: Periodic points and dynamic rays of exponential maps. Ann. Acad. Sci. Fenn. Math. 28, 327-354 (2003) · Zbl 1088.30017
[24] Titchmarsh, E.C.: The Theory of Functions, 2nd edn. Oxford University Press, Oxford (1939) · Zbl 0022.14602
[25] van Strien, S.: Quasi-symmetric rigidity, Manuscript (2009) · Zbl 1196.37083
[26] Zheng, J.-H.: On the non-existence of unbounded domains of normality of meromorphic functions. J. Math. Anal. Appl. 264(2), 479-494 (2001) · Zbl 0990.30015 · doi:10.1006/jmaa.2001.7681
[27] Zheng, J.-H.: Iteration of functions which are meromorphic outside a small set. Tohoku Math. J. (2) 57(1), 23-43 (2005) · Zbl 1158.37307 · doi:10.2748/tmj/1113234832
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.