×

Hyperbolic dimension and radial Julia sets of transcendental functions. (English) Zbl 1214.37036

Summary: We survey the definition of the radial Julia set \( J_r(f)\) of a meromorphic function (in fact, more generally, any Ahlfors islands map), and give a simple proof that the Hausdorff dimension of \( J_r(f)\) and the hyperbolic dimension \( \dim_{\operatorname{hyp}}(f)\) always coincide.

MSC:

37F35 Conformal densities and Hausdorff dimension for holomorphic dynamical systems
37F10 Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets
30D05 Functional equations in the complex plane, iteration and composition of analytic functions of one complex variable

References:

[1] Artur Avila and Mikhail Lyubich, Hausdorff dimension and conformal measures of Feigenbaum Julia sets, J. Amer. Math. Soc. 21 (2008), no. 2, 305 – 363. · Zbl 1205.37058
[2] I. N. Baker, P. Domínguez, and M. E. Herring, Dynamics of functions meromorphic outside a small set, Ergodic Theory Dynam. Systems 21 (2001), no. 3, 647 – 672. · Zbl 0990.37033 · doi:10.1017/S0143385701001328
[3] Krzysztof Barański, Boguslawa Karpińska, and Anna Zdunik, Hyperbolic dimension of Julia sets of meromorphic maps with logarithmic tracts, preprint, 2007, arXiv.org/abs/0711.2672v1. · Zbl 1205.37055
[4] Karl F. Barth and Philip J. Rippon, Exceptional values and the MacLane class \?, Bergman spaces and related topics in complex analysis, Contemp. Math., vol. 404, Amer. Math. Soc., Providence, RI, 2006, pp. 41 – 52. · Zbl 1102.30027 · doi:10.1090/conm/404/07633
[5] Karl F. Barth and Philip J. Rippon, Extensions of a theorem of Valiron, Bull. London Math. Soc. 38 (2006), no. 5, 815 – 824. · Zbl 1115.30037 · doi:10.1112/S0024609306018698
[6] Walter Bergweiler, A new proof of the Ahlfors five islands theorem, J. Anal. Math. 76 (1998), 337 – 347. · Zbl 0974.30010 · doi:10.1007/BF02786941
[7] Walter Bergweiler, Philip J. Rippon, and Gwyneth M. Stallard, Dynamics of meromorphic functions with direct or logarithmic singularities, preprint, 2007, arXiv.org/abs/0704.2712, Proc. London Math. Soc. 97 (2008), no. 2, 368-400. · Zbl 1174.37011
[8] M. Denker and M. Urbański, On Sullivan’s conformal measures for rational maps of the Riemann sphere, Nonlinearity 4 (1991), no. 2, 365 – 384. · Zbl 0722.58028
[9] Adam L. Epstein, Towers of finite type complex analytic maps, Ph.D. thesis, City Univ. of New York, 1995. Available at http://pcwww.liv.ac.uk/ lrempe/adam/thesis.pdf.
[10] -, Dynamics of finite type complex analytic maps I: Global structure theory, manuscript.
[11] Kenneth Falconer, Fractal geometry, John Wiley & Sons, Ltd., Chichester, 1990. Mathematical foundations and applications. · Zbl 0689.28003
[12] Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. · Zbl 0176.00801
[13] Janina Kotus and Mariusz Urbański, Fractal measures and ergodic theory of transcendental meromorphic functions, Transcendental Dynamics and Complex Analysis , London Math. Soc. Lecture Note Ser., vol. 348, Cambridge Univ. Press, 2008. · Zbl 1217.37046
[14] Pertti Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. · Zbl 0819.28004
[15] R. Daniel Mauldin and Mariusz Urbański, Dimensions and measures in infinite iterated function systems, Proc. London Math. Soc. (3) 73 (1996), no. 1, 105 – 154. · Zbl 0852.28005 · doi:10.1112/plms/s3-73.1.105
[16] Curtis T. McMullen, Hausdorff dimension and conformal dynamics. II. Geometrically finite rational maps, Comment. Math. Helv. 75 (2000), no. 4, 535 – 593. · Zbl 0982.37043 · doi:10.1007/s000140050140
[17] Richard Oudkerk, Iteration of Ahlfors and Picard functions which overflow their domains, manuscript. · Zbl 1025.37028
[18] Feliks Przytycki, Conical limit set and Poincaré exponent for iterations of rational functions, Trans. Amer. Math. Soc. 351 (1999), no. 5, 2081 – 2099. · Zbl 0920.58037
[19] Lasse Rempe and Philip J. Rippon, Exotic Baker and wandering domains for Ahlfors islands functions, preprint (2008). · Zbl 1285.37013
[20] Lasse Rempe and Sebastian van Strien, Absence of line fields and Mañé’s theorem for non-recurrent transcendental functions, preprint, 2007, arXiv:0802.0666, submitted for publication. · Zbl 1230.37056
[21] P. J. Rippon and G. M. Stallard, Dimensions of Julia sets of meromorphic functions with finitely many poles, Ergodic Theory Dynam. Systems 26 (2006), no. 2, 525 – 538. · Zbl 1087.37046 · doi:10.1017/S0143385705000544
[22] Mitsuhiro Shishikura, The boundary of the Mandelbrot set has Hausdorff dimension two, Astérisque 222 (1994), 7, 389 – 405. Complex analytic methods in dynamical systems (Rio de Janeiro, 1992). · Zbl 0813.58047
[23] Gwyneth M. Stallard, The Hausdorff dimension of Julia sets of meromorphic functions, J. London Math. Soc. (2) 49 (1994), no. 2, 281 – 295. · Zbl 0989.37042 · doi:10.1112/S0024610799008029
[24] Gwyneth M. Stallard, The Hausdorff dimension of Julia sets of entire functions. II, Math. Proc. Cambridge Philos. Soc. 119 (1996), no. 3, 513 – 536. · Zbl 0852.30018 · doi:10.1017/S0305004100074387
[25] Gwyneth M. Stallard, The Hausdorff dimension of Julia sets of hyperbolic meromorphic functions, Math. Proc. Cambridge Philos. Soc. 127 (1999), no. 2, 271 – 288. · Zbl 0952.30022 · doi:10.1017/S0305004199003813
[26] Mariusz Urbański, On some aspects of fractal dimensions in higher dimensional dynamics, Proceedings of the workshop “Problems in higher dimensional dynamics”, preprint SFB 170 Göttingen, vol. 3, 1995, pp. 18-25.
[27] Mariusz Urbański, Measures and dimensions in conformal dynamics, Bull. Amer. Math. Soc. (N.S.) 40 (2003), no. 3, 281 – 321. · Zbl 1031.37041
[28] Mariusz Urbański and Anna Zdunik, The finer geometry and dynamics of the hyperbolic exponential family, Michigan Math. J. 51 (2003), no. 2, 227 – 250. · Zbl 1038.37037 · doi:10.1307/mmj/1060013195
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.