×

Moments of discrete measures with dense jumps induced by \(\beta\)-expansions. (English) Zbl 1291.37008

Let \(\beta>1\) be a real number and \(\lceil \cdot \rceil\) be the ceiling function. The present paper studies the function \(\mu_{\beta}: [0,1] \rightarrow \mathbb{R}\) defined by \(\mu_{\beta}(\alpha):=\sum_{n=0}^\infty (\lceil \alpha(n+1)\rceil-\lceil \alpha(n)\rceil)/\beta^{n+1}\).
In a previous work of the same author [J. Number Theory 133, No. 11, 3982–3994 (2013; doi:10.1016/j.jnt.2012.11.008)], one sees that the function \(\mu_{\beta}\) is increasing, continuous at all irrational numbers and left-continuous but not right-continuous at all rational numbers. In this paper, the author shows that \(\mu_{\beta}\) is in fact a pure jump distribution, i.e., the Lebesgue-Stieltjes measure induced by \(\mu_{\beta}\) is discrete and the point masses are distributed over the whole rationals in \([0,1]\).
More precisely, the author shows that the jump of \(\mu_{\beta}\) at each rational \(\alpha=p/q\in [0,1)\) with \(p,q\) being coprime, is \({\beta-1\over \beta(\beta^q-1)}\), and the Lebesgue-Stieltjes measure associated to \(\mu_{\beta}\) can be written as \(\sum_{0\leq p/q<1, \text{gcd}(p,q)=1}{\beta-1\over \beta(\beta^q-1)} \delta_{p/q}\), where \(\delta_t\) is the Dirac measure at \(t\) and the summation runs over all reduced rationals in \([0,1)\). Furthermore, the author proves that the \(m\)-th moment of this associated Lebesgue-Stieltjes measure is \(M_m={\beta-1 \over \beta} \sum_{r=0}^m {1 \over m+1-r} {m \choose r} B_rLi_{r-1}(\beta^{-1})\), where \(B_n\) is the \(n\)-th Bernoulli number and \(Li_n\) is the polylogarithm of order \(n\) defined by \(Li_n(z):=\sum_{k=1}^\infty z^k/k^n\). The asymptotics \(M_m= O(m^{1/4}e^{-2\sqrt{m\log \beta}})\) as \(m\to\infty\) is also proved.

MSC:

37A45 Relations of ergodic theory with number theory and harmonic analysis (MSC2010)
11A63 Radix representation; digital problems
37B10 Symbolic dynamics
68R15 Combinatorics on words
Full Text: DOI

References:

[2] Denjoy, A., Sur une fonction réelle de Minkowski, J. Math. Pures Appl., 17, 105-151 (1938) · JFM 64.0188.02
[3] Salem, R., On some singular monotonic functions which are strictly increasing, Trans. Amer. Math. Soc., 53, 427-439 (1943) · Zbl 0060.13709
[4] Riesz, F.; Sz.-Nagy, B., (Functional Analysis. Functional Analysis, Dover Books on Advanced Mathematics (1990), Dover Publications, Inc.: Dover Publications, Inc. New York), Reprint of the 1955 original · Zbl 0732.47001
[5] Paradís, J.; Viader, P.; Bibiloni, L., Riesz-Nágy singular functions revisited, J. Math. Anal. Appl., 329, 1, 592-602 (2007) · Zbl 1115.26001
[6] Paradís, J.; Viader, P.; Bibiloni, L., The derivative of Minkowski’s \(?(x)\) function, J. Math. Anal. Appl., 253, 1, 107-125 (2001) · Zbl 0995.26005
[7] Dushistova, A. A.; Moshchevitin, N. G., On the derivative of the Minkowski question mark function \(?(x)\), J. Math. Sci. (NY), 182, 4, 463-471 (2012) · Zbl 1273.11109
[8] Kwon, D. Y., A devil’s staircase from rotations and irrationality measures for Liouville numbers, Math. Proc. Cambridge Philos. Soc., 145, 3, 739-756 (2008) · Zbl 1204.37041
[9] Kuba, G., On the differentiability of certain saltus functions, Colloq. Math., 125, 1, 15-30 (2011) · Zbl 1251.26004
[11] Dovgoshey, O.; Martio, O.; Ryazanov, V.; Vuorinen, M., The cantor function, Expo. Math., 24, 1, 1-37 (2006) · Zbl 1098.26006
[12] Alkauskas, G., The Minkowski question mark function: explicit series for the dyadic period function and moments, Math. Comp.. Math. Comp., Math. Comp., 80, 276, 2445-2454 (2011), Addenda and corrigenda · Zbl 1267.11007
[13] Alkauskas, G., The moments of Minkowski question mark function: the dyadic period function, Glasg. Math. J., 52, 1, 41-64 (2010) · Zbl 1229.11016
[14] Alkauskas, G., Semi-regular continued fractions and an exact formula for the moments of the Minkowski question mark function, Ramanujan J., 25, 3, 359-367 (2011) · Zbl 1231.11008
[15] Baek, I. S., A note on the moments of the Riesz-Nágy-Takács distribution, J. Math. Anal. Appl., 348, 1, 165-168 (2008) · Zbl 1251.42004
[16] Lubinsky, D. S., Jump distributions on \([- 1, 1]\) whose orthogonal polynomials have leading coefficients with given asymptotic behavior, Proc. Amer. Math. Soc., 104, 2, 516-524 (1988) · Zbl 0692.42007
[17] Van Assche, W.; Magnus, A. P., Sieved orthogonal polynomials and discrete measures with jumps dense in an interval, Proc. Amer. Math. Soc., 106, 1, 163-173 (1989) · Zbl 0681.42016
[18] Lothaire, M., Algebraic Combinatorics on Words (2002), Cambridge University Press · Zbl 1001.68093
[19] Parry, W., On the \(\beta \)-expansion of real numbers, Acta Math. Acad. Sci. Hungar., 11, 401-416 (1960) · Zbl 0099.28103
[20] Rényi, A., Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar., 8, 477-493 (1957) · Zbl 0079.08901
[21] Kwon, D. Y., The orbit of a \(\beta \)-transformation cannot lie in a small interval, J. Korean Math. Soc., 49, 4, 867-879 (2012) · Zbl 1258.11050
[22] Kwon, D. Y., The natural extensions of \(\beta \)-transformations which generalize baker’s transformations, Nonlinearity, 22, 2, 301-310 (2009) · Zbl 1178.37017
[23] Bullett, S.; Sentenac, P., Ordered orbits of the shift, square roots, and the devil’s staircase, Math. Proc. Cambridge Philos. Soc., 115, 3, 451-481 (1994) · Zbl 0823.58012
[24] Hardy, G. H.; Wright, E. M., An Introduction to the Theory of Numbers (2008), Oxford University Press · Zbl 1159.11001
[26] Newman, D. J., A Problem Seminar (1982), Springer-Verlag: Springer-Verlag New York, Berlin · Zbl 0496.00002
[27] Jacquet, P.; Szpankowski, W., Analytical depoissonization and its applications, Theoret. Comput. Sci., 201, 1-2, 1-62 (1998) · Zbl 0902.68087
[28] Lewin, L., Polylogarithms and Associated Functions (1981), North-Holland Publishing Co. · Zbl 0465.33001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.