×

Riesz–Nágy singular functions revisited. (English) Zbl 1115.26001

The authors revisit the Riesz-Nágy family of strictly increasing singular functions built as the limit of a sequence of deformations of the identity function, and the further result by Takács, where a closed form definition of a family of increasing continuous singular functions was provided. In particular, both families are related to a system for real number representation called \((\tau, \tau-1)\)-expansion: given \(\tau\in {\mathbb R},\) \(\tau>1,\) any \(x\in [0,1)\) can be expressed as \(x=\sum_1^{\infty} \varepsilon_i{1\over \tau^i}(\tau -1)^{\sum_{j=1}^{i-1}\varepsilon_j},\) with \(\varepsilon_i\in \{0,1\}.\) After a detailed study of these expansions, exploiting their metrical properties, they prove the singularity of the family. Moreover, with the help of \((\tau,\tau-1)\)-expansions, they extend the family and obtain conditions for the null and infinite derivatives.
Reviewer: Rita Pini (Milano)

MSC:

26A15 Continuity and related questions (modulus of continuity, semicontinuity, discontinuities, etc.) for real functions in one variable
26A48 Monotonic functions, generalizations
Full Text: DOI

References:

[1] H. Minkowski, in: Verhandlungen des III internationalen mathematiker-kongresses in Heidelberg, Berlin, 1904. Also in: Gesammelte Abhandlungen, vol. 2, 1991, pp. 50-51 for the ? function; H. Minkowski, in: Verhandlungen des III internationalen mathematiker-kongresses in Heidelberg, Berlin, 1904. Also in: Gesammelte Abhandlungen, vol. 2, 1991, pp. 50-51 for the ? function
[2] Denjoy, A., Sur quelques points de la théorie des fonctions, C. R. Acad. Sci. Paris, 194, 44-46 (1932) · JFM 58.0247.02
[3] Denjoy, A., Sur une fonction de Minkowski, C. R. Acad. Sci. Paris, 198, 44-47 (1934) · JFM 60.0220.01
[4] Salem, R., On some singular monotonic functions which are strictly increasing, Trans. Amer. Math. Soc., 53, 427-439 (1943) · Zbl 0060.13709
[5] Denjoy, A., Sur une fonction réelle de Minkowski, J. Math. Pures Appl., 17, 105-151 (1938) · JFM 64.0188.02
[6] Kinney, J. R., Note on a singular function of Minkowski, Proc. Amer. Math. Soc., 11, 788-794 (1960) · Zbl 0109.28101
[7] Tichy, R. F.; Uitz, J., An extension of Minkowski’s singular function, Appl. Math. Lett., 8, 5, 39-46 (1995) · Zbl 0871.26008
[8] Ramharter, G., On Minkowski’s singular function, Proc. Amer. Math. Soc., 99, 3, 596-597 (1987) · Zbl 0622.10004
[9] Girgensohn, R., Constructing singular functions via Farey fractions, J. Math. Anal. Appl., 203, 1, 127-141 (1996) · Zbl 0866.26003
[10] Viader, P.; Paradís, J.; Bibiloni, L., A new light on Minkowski’s \(?(x)\) function, J. Number Theory, 73, 2, 212-227 (1998) · Zbl 0928.11006
[11] Paradís, J.; Viader, P.; Bibiloni, L., The derivative of Minkowski’s \(?(x)\) function, J. Math. Anal. Appl., 253, 1, 107-125 (2001) · Zbl 0995.26005
[12] Riesz, F.; Sz.-Nágy, B., Functional Analysis, Dover Books on Advanced Mathematics (1990), Dover: Dover New York, Translated from the second French edition by Leo F. Boron, reprint of the 1955 original. First published in French in 1952 by the Hungarian Academy of Science · Zbl 0732.47001
[13] E. Hellinger, Die othogonalinvarianten quadratischer formen von unendlichvielen variabelen, PhD thesis, Göttingen, 1907; E. Hellinger, Die othogonalinvarianten quadratischer formen von unendlichvielen variabelen, PhD thesis, Göttingen, 1907
[14] Billingsley, P., Ergodic Theory and Information (1965), John Wiley & Sons: John Wiley & Sons New York · Zbl 0141.16702
[15] Billingsley, P., Probability and Measure, Wiley Ser. Probab. Math. Stat. (1995), John Wiley & Sons: John Wiley & Sons New York, a Wiley-Interscience Publication · Zbl 0822.60002
[16] de Rham, G., Sur une courbe plane, J. Math. Pures Appl. (9), 35, 25-42 (1956) · Zbl 0070.39101
[17] Reese, S., Some Fourier-Stieltjes coefficients revisited, Proc. Amer. Math. Soc., 105, 2, 384-386 (1989) · Zbl 0682.42005
[18] Hewitt, E.; Stromberg, K., Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable (1965), Springer: Springer New York · Zbl 0137.03202
[19] Takács, L., An increasing continuous singular function, Amer. Math. Monthly, 85, 1, 35-37 (1978) · Zbl 0394.26005
[20] Rényi, A., Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar., 8, 477-493 (1957) · Zbl 0079.08901
[21] Shiokawa, I., Ergodic properties of piecewise linear transformations, Proc. Japan Acad., 46, 1122-1125 (1970) · Zbl 0228.28014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.