×

Discontinuous Galerkin methods for elliptic partial differential equations with random coefficients. (English) Zbl 1290.65006

The numerical solution of elliptic equations with random coefficients with zero boundary condition on the boundary of a polygonal domain is studied, where the randomness comes from a bounded random vector \(y\) with density function \( \rho\). A discontinuous Galerkin method and a discontinuous Galerkin Monte Carlo method are performed and their convergence are obtained, respectively. Numerical examples are examined.

MSC:

65C30 Numerical solutions to stochastic differential and integral equations
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65C05 Monte Carlo methods
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
35R60 PDEs with randomness, stochastic partial differential equations
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs

References:

[1] DOI: 10.1002/num.20663 · doi:10.1002/num.20663
[2] DOI: 10.1137/0719052 · Zbl 0482.65060 · doi:10.1137/0719052
[3] DOI: 10.1137/050645142 · Zbl 1151.65008 · doi:10.1137/050645142
[4] DOI: 10.1137/S0036142902418680 · Zbl 1080.65003 · doi:10.1137/S0036142902418680
[5] Benth F., Stoch. Stoch. Rep 63 pp 313– (1998) · Zbl 0902.60048 · doi:10.1080/17442509808834153
[6] P. Billingsley,Probability and Measure, Wiley, New York, 1995.
[7] DOI: 10.1007/s11118-008-9078-4 · Zbl 1146.65006 · doi:10.1007/s11118-008-9078-4
[8] DOI: 10.1016/j.cma.2003.12.059 · Zbl 1067.76565 · doi:10.1016/j.cma.2003.12.059
[9] DOI: 10.1016/S0045-7825(01)00237-7 · Zbl 1075.65006 · doi:10.1016/S0045-7825(01)00237-7
[10] DOI: 10.1016/j.cam.2006.08.029 · Zbl 1141.65078 · doi:10.1016/j.cam.2006.08.029
[11] DOI: 10.1016/j.cma.2004.04.008 · Zbl 1143.65392 · doi:10.1016/j.cma.2004.04.008
[12] DOI: 10.1002/nme.2579 · Zbl 1176.74181 · doi:10.1002/nme.2579
[13] DOI: 10.1007/978-1-4612-3094-6 · doi:10.1007/978-1-4612-3094-6
[14] DOI: 10.1137/S1064827501387826 · Zbl 1014.65004 · doi:10.1137/S1064827501387826
[15] M. Loève,Probability Theory, Springer-Verlag, Berlin, 1977. · doi:10.1007/978-1-4684-9464-8
[16] DOI: 10.1016/j.cma.2004.05.027 · Zbl 1088.65002 · doi:10.1016/j.cma.2004.05.027
[17] DOI: 10.1137/060663660 · Zbl 1176.65137 · doi:10.1137/060663660
[18] Riviere B., SIAM, Philadelphia (2008)
[19] DOI: 10.1023/A:1011546411957 · Zbl 1049.76565 · doi:10.1023/A:1011546411957
[20] DOI: 10.1137/S003614290037174X · Zbl 1010.65045 · doi:10.1137/S003614290037174X
[21] DOI: 10.1016/j.jcp.2004.11.017 · Zbl 1072.65149 · doi:10.1016/j.jcp.2004.11.017
[22] DOI: 10.1137/0715010 · Zbl 0384.65058 · doi:10.1137/0715010
[23] DOI: 10.1137/040615201 · Zbl 1091.65006 · doi:10.1137/040615201
[24] DOI: 10.1007/s11425-007-0103-7 · Zbl 1132.60051 · doi:10.1007/s11425-007-0103-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.