×

On the Gorenstein locus of the punctual Hilbert scheme of degree 11. (English) Zbl 1287.13013

The Hilbert scheme \({\text{Hilb}}_d (\mathbb P_k^n)\) parametrizing length \(d\) closed subschemes \(X \subset \mathbb P_k^n\) is irreducible for small values of \(d\) (because it is the closure of the open locus \({\mathcal R}\) corresponding to \(d\) distinct points), but for \(d \gg 0\) it was shown to be reducible by A. Iarrobino [Invent. Math. 15, 72–77 (1972; Zbl 0227.14006)]. The first explicit example \({\text{Hilb}}_8 (\mathbb P_k^4)\) was given by A. Iarrobino and J. Emsalem [Compos. Math. 36, 145–188 (1978; Zbl 0393.14002)]; more recently Cartwright, Erman, Velasco and Viray showed that \({\text{Hilb}}_8 (\mathbb P_k^n)\) has exactly two irreducible components for \(n \geq 4\) [D. A. Cartwright et al., Algebra Number Theory 3, No. 7, 763–795 (2009; Zbl 1187.14005)].
Naturally the open Gorenstein locus \({\text{Hilb}}^G_d (\mathbb P_k^n) \subset {\text{Hilb}}_d (\mathbb P_k^n)\) also contains \(\mathcal R\) and is irreducible for small \(d\), but Iarrobino and V. Kanev showed \({\text{Hilb}}^G_{14} (\mathbb P_k^6)\) is reducible and conjectured irreducibility for \(d < 14\) [A. Iarrobino and V. Kanev, Power sums, Gorenstein algebras, and determinantal loci. With an appendix ‘The Gotzmann theorems and the Hilbert scheme’ by Anthony Iarrobino and Steven L. Kleiman. Lecture Notes in Mathematics. 1721. Berlin: Springer. (1999; Zbl 0942.14026)]. The authors of the paper under review earlier showed that \({\text{Hilb}}^G_{d} (\mathbb P_k^n)\) is irreducible for \(n \leq 3\) or \(d \leq 10\) [J. Pure Appl. Algebra 213, No. 11, 2055–2074 (2009; Zbl 1169.14003) and J. Pure Appl. Algebra 215, No. 6, 1243–1254 (2011; Zbl 1215.14009)] and here they extend the result to \(d=11\).
The problem reduces to studying zero dimensional local Gorenstein \(k\)-algebras \(A\) of length \(d = 11\), which via Macaulay’s theory of inverse systems can be written \(k[[x_1, \dots x_n]]/\text{Ann}(F)\) for suitable \(F \in k[y_1, \dots y_n]\) via the action of \(k[[x_1, \dots x_n]]\) on \(k[y_1, \dots y_n]\) given by \(x_i = \partial/\partial y_i\). Using a filtration of \(\mathrm{gr}(A)\) appearing in work of T. Iarrobino [Mem. Am. Math. Soc. 514, 115 p. (1994; Zbl 0793.13010)], the authors write the equation for \(F\) in a special form with an integer invariant \(f_3\). In general they show that if \(f_3 \leq 3\), then the scheme corresponding to the algebra \(A\) is in \({\overline {\mathcal R}}\) and \(f_3 > 3\) leads to particular Hilbert functions (especially \(H_A = (1,4,4,1,1)\)) which they handle with special arguments. They also give an almost complete description of the singular locus of \({\text{Hilb}}^G_{11} (\mathbb P_k^n)\).

MSC:

13H10 Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.)
14C05 Parametrization (Chow and Hilbert schemes)
14M05 Varieties defined by ring conditions (factorial, Cohen-Macaulay, seminormal)

Software:

CoCoA

References:

[1] Atiyah, M. F.; Macdonald, I. G., Introduction to Commutative Algebra (1969), Addison-Wesley Publishing Co. · Zbl 0175.03601
[2] Bruns, W.; Herzog, J., Cohen-Macaulay Rings (1998), Cambridge University Press · Zbl 0909.13005
[3] Buczyńska, W.; Buczyński, J., Secant varieties to high degree Veronese reembeddings, catalecticant matrices and smoothable Gorenstein schemes, J. Algebr. Geom., 23, 63-90 (2014) · Zbl 1295.14047
[4] Cartwright, D. A.; Erman, D.; Velasco, M.; Viray, B., Hilbert schemes of 8 point in \(\mathbb{A}^d\), Algebra Number Theory, 3, 763-795 (2009) · Zbl 1187.14005
[5] Casnati, G., Isomorphism types of Artinian Gorenstein local algebras of multiplicity at most 9, Commun. Algebra, 38, 2738-2761 (2010) · Zbl 1201.13006
[6] Casnati, G.; Elias, J.; Notari, R.; Rossi, M. E., Poincaré series and deformations of Gorenstein local algebras with low socle degree, Commun. Algebra, 41, 1049-1059 (2013) · Zbl 1274.13032
[7] Casnati, G.; Jelisiejew, J.; Notari, R., On the rationality of Poincaré series of Gorenstein algebras via Macaulay’s correspondence (5 July 2013)
[8] Casnati, G.; Notari, R., On the Gorenstein locus of some punctual Hilbert schemes, J. Pure Appl. Algebra, 213, 2055-2074 (2009) · Zbl 1169.14003
[9] Casnati, G.; Notari, R., On the irreducibility and the singularities of the Gorenstein locus of the punctual Hilbert scheme of degree 10, J. Pure Appl. Algebra, 215, 1243-1254 (2011) · Zbl 1215.14009
[10] Casnati, G.; Notari, R., A structure theorem for 2-stretched Gorenstein algebras (8 Dec 2013)
[11] CoCoATeam, CoCoA: a system for doing Computations in Commutative Algebra, available at
[12] Elias, J.; Rossi, M. E., Isomorphism classes of short Gorenstein local rings via Macaulay’s inverse system, Trans. Am. Math. Soc., 364, 4589-4604 (2012) · Zbl 1281.13015
[13] Elias, J.; Valla, G., Isomorphism classes of certain Artinian Gorenstein algebras, Algebr. Represent. Theory, 14, 429-448 (2011) · Zbl 1248.13022
[14] Emsalem, J., Géométrie des points épais, Bull. Soc. Math. Fr., 106, 399-416 (1978) · Zbl 0396.13017
[15] J. Emsalem, A. Iarrobino, Réseaux de coniques et algèbres de longueur 7 associées, Université de Paris VII, preprint, 1977.
[16] Fogarty, J., Algebraic families on an algebraic surface, Am. J. Math., 90, 511-521 (1968) · Zbl 0176.18401
[17] Geramita, A. V., Catalecticant varieties, (van Oystaeyen, F., Commutative Algebra and Algebraic Geometry (Ferrara). Commutative Algebra and Algebraic Geometry (Ferrara), Lect. Notes Pure Appl. Math., vol. 206 (1999), Dekker: Dekker New York), 143-156 · Zbl 0957.13007
[18] Hartshorne, R., Algebraic Geometry, G.T.M., vol. 52 (1977), Springer · Zbl 0367.14001
[19] Iarrobino, A., Reducibility of the families of 0-dimensional schemes on a variety, Invent. Math., 15, 72-77 (1972) · Zbl 0227.14006
[20] Iarrobino, A., Associated graded algebra of a Gorenstein Artin algebra, Mem. Am. Math. Soc., 107, 514 (1994), viii+115 pp · Zbl 0793.13010
[21] Iarrobino, A.; Kanev, V., Power Sums, Gorenstein Algebras, and Determinantal Loci, Lect. Notes Math., vol. 1721 (1999), Springer · Zbl 0942.14026
[22] Matsumura, H., Commutative Ring Theory (1980), Cambridge U.P.
[23] Mazzola, G., The algebraic and geometric classification of associative algebras of dimension five, Manuscr. Math., 27, 81-101 (1979) · Zbl 0446.16033
[24] Mazzola, G., Generic finite schemes and Hochschild cocycles, Comment. Math. Helv., 55, 267-293 (1980) · Zbl 0463.14004
[25] Poonen, B., The moduli space of commutative algebras of finite rank, J. Eur. Math. Soc., 10, 817-836 (2008) · Zbl 1151.14011
[26] Poonen, B., Isomorphism types of commutative algebras of finite rank over an algebraically closed field, (Lauter, Kristin E.; Ribet, Kenneth A., Computational Arithmetic Geometry. Computational Arithmetic Geometry, Contemp. Math., vol. 463 (2008), AMS), 111-120 · Zbl 1155.13015
[27] Raicu, C., \(3 \times 3\) minors of catalecticants (8 May 2013)
[28] Stoia, M., Points de Gorenstein d’un morphisme, C. R. Acad. Sci. Paris, Ser. A-B, 281, A847-A849 (1975) · Zbl 0316.14003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.