×

Isomorphism classes of short Gorenstein local rings via Macaulay’s inverse system. (English) Zbl 1281.13015

Let \(K\) be an algebraically closed field of characteristic zero. The authors study Artinian Gorenstein local \(K\)-algebras \((A,\mathfrak m)\) such that \(\mathfrak m^4 = 0\) (i.e., such that the socle degree is \(\leq 3\)), and specifically the isomorphism class of such algebras. Their main result is that the classification of such algebras is equivalent to the projective classification of the cubic hypersurfaces in \(\mathbb P^n_K\). The main step is to prove that an Artinian Gorenstein local ring \(A\) with Hilbert function \((1,n,n,1))\) is isomorphic to its own associated graded ring (with respect to the maximal ideal). This is false for higher socle degree, and is surprising because it reduces the study of this class of local rings to the graded case. This blend of classical results on cubic hypersurfaces in projective space and the algebraic methods for studying local Gorenstein algebras allows the authors to recover recent results by several authors (see the introduction). A central tool is the use of Macaulay’s inverse systems, giving a one-to-one correspondence between Artinian Gorenstein algebras and suitable polynomials. They carefully describe the background for inverse systems in section 2, before proceeding to their main results.

MSC:

13H10 Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.)
13H15 Multiplicity theory and related topics
14C05 Parametrization (Chow and Hilbert schemes)

References:

[1] Luchezar L. Avramov, Srikanth B. Iyengar, and Liana M. Şega, Free resolutions over short local rings, J. Lond. Math. Soc. (2) 78 (2008), no. 2, 459 – 476. · Zbl 1153.13011 · doi:10.1112/jlms/jdn027
[2] Rikard Bøgvad, Gorenstein rings with transcendental Poincaré-series, Math. Scand. 53 (1983), no. 1, 5 – 15. · Zbl 0527.13013 · doi:10.7146/math.scand.a-12010
[3] M. Brundu and A. Logar, Parametrization of the orbits of cubic surfaces, Transform. Groups 3 (1998), no. 3, 209 – 239. · Zbl 0938.14029 · doi:10.1007/BF01236873
[4] D. A. Cartwright, D. Erman, M. Velasco, and B. Viray, Hilbert schemes of 8 points, arXiv:0803.0341 (2008). · Zbl 1187.14005
[5] Gianfranco Casnati and Roberto Notari, On some Gorenstein loci in \Bbb H\?\?\?\(_{6}\)(\Bbb P\(^{4}\)_{\?}), J. Algebra 308 (2007), no. 2, 493 – 523. · Zbl 1120.14003 · doi:10.1016/j.jalgebra.2006.09.023
[6] Gianfranco Casnati and Roberto Notari, On the Gorenstein locus of some punctual Hilbert schemes, J. Pure Appl. Algebra 213 (2009), no. 11, 2055 – 2074. · Zbl 1169.14003 · doi:10.1016/j.jpaa.2009.03.002
[7] G. Casnati, J. Elias, M.E. Rossi, R. Notari, Poincaré series and deformations of Gorenstein local algebras with low socle degree, preprint (2010).
[8] Aldo Conca, Maria Evelina Rossi, and Giuseppe Valla, Gröbner flags and Gorenstein algebras, Compositio Math. 129 (2001), no. 1, 95 – 121. · Zbl 1030.13005 · doi:10.1023/A:1013160203998
[9] Juan Elias and Giuseppe Valla, Structure theorems for certain Gorenstein ideals, Michigan Math. J. 57 (2008), 269 – 292. Special volume in honor of Melvin Hochster. · Zbl 1180.13033 · doi:10.1307/mmj/1220879409
[10] -, Isomorphism classes of certain Artinian Gorenstein algebras, Algebras and Representation Theory, DOI 10.1007/s10468-009-9196-8 (2009).
[11] Jacques Emsalem, Géométrie des points épais, Bull. Soc. Math. France 106 (1978), no. 4, 399 – 416 (French, with English summary). · Zbl 0396.13017
[12] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. · Zbl 0367.14001
[13] I. B. Henriques and L. M. Şega, Free resolutions over short local rings, arXiv: 0904.3510v2 (2009), to appear in Math. Z.
[14] A. Iarrobino, Reducibility of the families of 0-dimensional schemes on a variety, Invent. Math. 15 (1972), 72 – 77. · Zbl 0227.14006 · doi:10.1007/BF01418644
[15] Anthony Iarrobino, Compressed algebras: Artin algebras having given socle degrees and maximal length, Trans. Amer. Math. Soc. 285 (1984), no. 1, 337 – 378. · Zbl 0548.13009
[16] Anthony A. Iarrobino, Associated graded algebra of a Gorenstein Artin algebra, Mem. Amer. Math. Soc. 107 (1994), no. 514, viii+115. · Zbl 0793.13010 · doi:10.1090/memo/0514
[17] Anthony Iarrobino and Vassil Kanev, Power sums, Gorenstein algebras, and determinantal loci, Lecture Notes in Mathematics, vol. 1721, Springer-Verlag, Berlin, 1999. Appendix C by Iarrobino and Steven L. Kleiman. · Zbl 0942.14026
[18] I. Kaplanski, Fields and rings, Univ. of Chicago Press (1970).
[19] F. S. Macaulay, The algebraic theory of modular systems, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1994. Revised reprint of the 1916 original; With an introduction by Paul Roberts. · Zbl 0802.13001
[20] D. G. Northcott, Injective envelopes and inverse polynomials, J. London Math. Soc. (2) 8 (1974), 290 – 296. · Zbl 0284.13012 · doi:10.1112/jlms/s2-8.2.290
[21] Bjorn Poonen, Isomorphism types of commutative algebras of finite rank over an algebraically closed field, Computational arithmetic geometry, Contemp. Math., vol. 463, Amer. Math. Soc., Providence, RI, 2008, pp. 111 – 120. · Zbl 1155.13015 · doi:10.1090/conm/463/09050
[22] D. W. Sharpe and P. Vámos, Injective modules, Cambridge University Press, London-New York, 1972. Cambridge Tracts in Mathematics and Mathematical Physics, No. 62. · Zbl 0245.13001
[23] Junzo Watanabe, The Dilworth number of Artin Gorenstein rings, Adv. Math. 76 (1989), no. 2, 194 – 199. · Zbl 0703.13019 · doi:10.1016/0001-8708(89)90049-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.