×

Accurate and efficient evaluation of failure probability for partial different equations with random input data. (English) Zbl 1286.65156

Summary: Several computational challenges arise when evaluating the failure probability of a given system in the context of risk prediction or reliability analysis. When the dimension of the uncertainties becomes high, well established direct numerical methods can not be employed because of the ”curse-of-dimensionality”. Many surrogate models have been proposed with the aim of reducing computational effort. However, most of them fail in computing an accurate failure probability when the limit state surface defined by the failure event in the probability space lacks smoothness. In addition, for a stochastic system modeled by partial differential equations (PDEs) with random input, only a limited number of the underlying PDEs (order of a few tens) are affordable to solve in practice due to the considerable computational effort, therefore preventing the application of many numerical methods especially for high dimensional random inputs. In this work we develop hybrid and goal-oriented adaptive reduced basis methods to tackle these challenges by accurately and efficiently computing the failure probability of a stochastic PDE. The curse-of-dimensionality is significantly alleviated by reduced basis approximation whose bases are constructed by goal-oriented adaptation. Moreover, an accurate evaluation of the failure probability for PDE system with solution of low regularity in probability space is guaranteed by the certified a posteriori error bound for the output approximation error. At the end of this paper we suitably extend our proposed method to deal with more general PDE models. Finally we perform several numerical experiments to illustrate its computational accuracy and efficiency.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N75 Probabilistic methods, particle methods, etc. for boundary value problems involving PDEs
74S60 Stochastic and other probabilistic methods applied to problems in solid mechanics
35J25 Boundary value problems for second-order elliptic equations
35R60 PDEs with randomness, stochastic partial differential equations
60H25 Random operators and equations (aspects of stochastic analysis)
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)

Software:

rbMIT
Full Text: DOI

References:

[1] Acosta, G.; Durán, R. G., An optimal Poincaré inequality in L1 for convex domains, Proc. Amer. Math. Soc., 195-202 (2004) · Zbl 1057.26010
[2] Babuška, I.; Nobile, F.; Tempone, R., A stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal., 45, 3, 1005-1034 (2007) · Zbl 1151.65008
[3] Babuška, I.; Tempone, R.; Zouraris, G. E., Galerkin finite element approximations of stochastic elliptic partial differential equations, SIAM J. Numer. Anal., 42, 2, 800-825 (2005) · Zbl 1080.65003
[4] Barrault, M.; Maday, Y.; Nguyen, N. C.; Patera, A. T., An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations, C.R. Math. Anal. Numér., 339, 9, 667-672 (2004) · Zbl 1061.65118
[5] Beck, J.; Nobile, F.; Tamellini, L.; Tempone, R., Stochastic spectral Galerkin and collocation methods for PDEs with random coefficients: a numerical comparison, Spectral and High Order Methods for Partial Differential Equations, 76 (2011), Springer, pp. 43-62 · Zbl 1216.65004
[6] Binev, P.; Cohen, A.; Dahmen, W.; DeVore, R.; Petrova, G.; Wojtaszczyk, P., Convergence rates for greedy algorithms in reduced basis methods, SIAM J. Math. Anal., 43, 3, 1457-1472 (2011) · Zbl 1229.65193
[7] Boyaval, S.; LeBris, C.; Maday, Y.; Nguyen, N. C.; Patera, A. T., A reduced basis approach for variational problems with stochastic parameters: Application to heat conduction with variable Robin coefficient, Comput. Methods Appl. Mech. Engrg., 198, 41-44, 3187-3206 (2009) · Zbl 1230.80013
[8] Bucher, C. G.; Bourgund, U., A fast and efficient response surface approach for structural reliability problems, Struct. Saf., 7, 1, 57-66 (1990)
[9] Cappé, O.; Douc, R.; Guillin, A.; Marin, J. M.; Robert, C. P., Adaptive importance sampling in general mixture classes, Stat. Comput., 18, 4, 447-459 (2008)
[10] Chen, P.; Quarteroni, A.; Rozza, G., Comparison between reduced basis and stochastic collocation methods for elliptic problems, Journal of Scientific Computing (2013)
[14] Chen, Y.; Hesthaven, J. S.; Maday, Y.; Rodŕguez, J., Certified reduced basis methods and output bounds for the harmonic Maxwell’s equations, SIAM J. Sci. Comput., 32, 2, 970-996 (2010) · Zbl 1213.78011
[15] Cohen, A.; Devore, R.; Schwab, C., Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE’s, Anal. Appl., 9, 01, 11-47 (2011) · Zbl 1219.35379
[16] DeVore, R. A.; Lorentz, G. G., Constructive Approximation (1993), Springer · Zbl 0797.41016
[17] Ernst, O. G.; Powell, C. E.; Silvester, D. J.; Ullmann, E., Efficient solvers for a linear stochastic galerkin mixed formulation of diffusion problems with random data, SIAM J. Sci. Comput., 31, 2, 1424-1447 (2009) · Zbl 1187.35298
[18] Evans, L. C., Partial differential equations, Graduate Studies in Mathematics, vol. 19 (2009), American Mathematical Society
[19] Faravelli, L., Response-surface approach for reliability analysis, J. Engrg. Mech., 115, 12, 2763-2781 (1989)
[20] Fishman, G. S., Monte Carlo: Concepts, Algorithms, and Applications (1996), Springer · Zbl 0859.65001
[21] Frauenfelder, P.; Schwab, C.; Todor, R. A., Finite elements for elliptic problems with stochastic coefficients, Comput. Methods Appl. Mech. Engrg., 194, 2-5, 205-228 (2005) · Zbl 1143.65392
[22] Ghanem, R. G.; Spanos, P. D., Stochastic finite elements: a spectral approach (2003), Courier Dover Publications
[23] Giraud, L.; Langou, J.; Rozložník, M.; van den Eshof, J., Rounding error analysis of the classical Gram-Schmidt orthogonalization process, Numer. Math., 101, 1, 87-100 (2005) · Zbl 1075.65060
[24] Grepl, M. A.; Maday, Y.; Nguyen, N. C.; Patera, A. T., Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations, ESAIM: Math. Modell. Numer. Anal., 41, 03, 575-605 (2007) · Zbl 1142.65078
[25] Grepl, M. A.; Patera, A. T., A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations, ESAIM: Math. Modell. Numer. Anal., 39, 01, 157-181 (2005) · Zbl 1079.65096
[26] Haasdonk, B.; Ohlberger, M., Reduced basis method for finite volume approximations of parametrized linear evolution equations, ESAIM: Math. Modell. Numer. Anal., 42, 02, 277-302 (2008) · Zbl 1388.76177
[27] Huynh, D. B.P.; Rozza, G.; Sen, S.; Patera, A. T., A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants, C.R. Math. Anal. Numér., 345, 8, 473-478 (2007) · Zbl 1127.65086
[28] Lassila, T.; Quarteroni, A.; Rozza, G., A reduced basis model with parametric coupling for fluid-structure interaction problems, SIAM J. Sci. Comput., 34, 2, 1187-1213 (2012) · Zbl 1390.74053
[29] Li, J.; Li, J.; Xiu, D., An efficient surrogate-based method for computing rare failure probability, J. Comput. Phys., 230, 24, 8683-8697 (2011) · Zbl 1370.65005
[30] Li, J.; Xiu, D., Evaluation of failure probability via surrogate models, J. Comput. Phys., 229, 23, 8966-8980 (2010) · Zbl 1204.65010
[31] Maday, Y.; Nguyen, N. C.; Patera, A. T.; Pau, G. S.H., A general, multipurpose interpolation procedure: the magic points, Commun. Pure Appl. Anal., 8, 1, 383-404 (2009) · Zbl 1184.65020
[32] Mathelin, L.; Le Maître, O., Dual-based a posteriori error estimate for stochastic finite element methods, Commun. Appl. Math. Comput. Sci., 2, 1, 83-115 (2007) · Zbl 1131.65003
[33] Matthies, H. G.; Keese, A., Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations, Comput. Methods Appl. Mech. Engrg., 194, 12-16, 1295-1331 (2005) · Zbl 1088.65002
[34] Nobile, F.; Tempone, R.; Webster, C. G., An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data, SIAM J. Numer. Anal., 46, 5, 2411-2442 (2008) · Zbl 1176.65007
[35] Nobile, F.; Tempone, R.; Webster, C. G., A sparse grid stochastic collocation method for partial differential equations with random input data, SIAM J. Numer. Anal., 46, 5, 2309-2345 (2008) · Zbl 1176.65137
[36] Nouy, A., A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations, Comput. Methods Appl. Mech. Engrg., 196, 45-48, 4521-4537 (2007) · Zbl 1173.80311
[37] Nouy, A., Recent developments in spectral stochastic methods for the numerical solution of stochastic partial differential equations, Arch. Comput. Methods Engrg., 16, 3, 251-285 (2009) · Zbl 1360.65036
[38] Nouy, A.; Clement, A.; Schoefs, F.; Moës, N., An extended stochastic finite element method for solving stochastic partial differential equations on random domains, Comput. Methods Appl. Mech. Engrg., 197, 51-52, 4663-4682 (2008) · Zbl 1194.74457
[39] Oden, J. T.; Prudhomme, S., Goal-oriented error estimation and adaptivity for the finite element method, Comput. Math. Appl., 41, 5, 735-756 (2001) · Zbl 0987.65110
[40] Oden, J. T.; Vemaganti, K. S., Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials: I. error estimates and adaptive algorithms, J. Comput. Phys., 164, 1, 22-47 (2000) · Zbl 0992.74072
[42] Quarteroni, A., Numerical models for differential problems, MS & A, vol 2 (2009), Springer · Zbl 1170.65326
[43] Quarteroni, A.; Rozza, G., Numerical solution of parametrized Navier-Stokes equations by reduced basis methods, Numer. Methods Partial Differ. Equ., 23, 4, 923-948 (2007) · Zbl 1178.76238
[44] Quarteroni, A.; Rozza, G.; Manzoni, A., Certified reduced basis approximation for parametrized partial differential equations and applications, J. Math. Ind., 1, 1, 1-49 (2011) · Zbl 1273.65148
[45] Quarteroni, A.; Valli, A., Numerical Approximation of Partial Differential Equations (1994), Springer · Zbl 0803.65088
[46] Rackwitz, R., Reliability analysis review and some perspectives, Struct. Saf., 23, 4, 365-395 (2001)
[47] Robert, C. P.; Casella, G., Monte Carlo statistical methods, vol. 2 (1999), Springer · Zbl 0935.62005
[48] Rovas, D. V.; Machiels, L.; Maday, Y., Reduced-basis output bound methods for parabolic problems, IMA J. Numer. Anal., 26, 3, 423-445 (2006) · Zbl 1101.65099
[50] Rozza, G.; Huynh, D. B.P.; Patera, A. T., Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations, Arch. Comput. Methods Engrg., 15, 3, 229-275 (2008) · Zbl 1304.65251
[51] Saad, Y., Iterative Methods for Sparse Linear Systems, vol. 620 (1996), PWS Publishing Company: PWS Publishing Company Boston · Zbl 1002.65042
[52] Schuëller, G. I.; Pradlwarter, H. J.; Koutsourelakis, P. S., A critical appraisal of reliability estimation procedures for high dimensions, Probab. Engrg. Mech., 19, 4, 463-474 (2004)
[53] Schwab, C.; Todor, R. A., Karhunen-Loève approximation of random fields by generalized fast multipole methods, J. Comput. Phys., 217, 1, 100-122 (2006) · Zbl 1104.65008
[54] Schwab, C.; Todor, R. A., Sparse finite elements for elliptic problems with stochastic loading, Numer. Math., 95, 4, 707-734 (2003) · Zbl 1044.65085
[55] Stefanou, G., The stochastic finite element method: past, present and future, Comput. Methods Appl. Mech. Engrg., 198, 9-12, 1031-1051 (2009) · Zbl 1229.74140
[56] Tao, Terence; Van, Vu., Random matrices: universality of local eigenvalue statistics, Acta Mathematica, 206, 1, 127-204 (2011) · Zbl 1217.15043
[57] Xiu, D.; Em Karniadakis, G., Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos, Comput. Methods Appl. Mech. Engrg., 191, 43, 4927-4948 (2002) · Zbl 1016.65001
[58] Xiu, D.; Hesthaven, J. S., High-order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput., 27, 3, 1118-1139 (2005) · Zbl 1091.65006
[59] Xiu, D.; Karniadakis, G. E., The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24, 2, 619-644 (2003) · Zbl 1014.65004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.