×

On conformally invariant equations on \(\mathbf R^n\). (English) Zbl 1286.35076

Summary: In this paper we provide a complete characterization of fully nonlinear conformally invariant differential operators of any integer order on \(\mathbf R^n\), which extends the result proved for operators of the second order by A. Li and Y. Li [Commun. Pure Appl. Math. 56, No. 10, 1416–1464 (2003; Zbl 1155.35353)]. In particular we prove existence and uniqueness of a family of tensors (suitably invariant under Möbius transformations) which are the basic building blocks that appear in the definition of all conformally invariant differential operators on \(\mathbf R^n\). We also explicitly compute the tensors that are related to operators of order up to four.

MSC:

35G20 Nonlinear higher-order PDEs
35A30 Geometric theory, characteristics, transformations in context of PDEs
58J70 Invariance and symmetry properties for PDEs on manifolds
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions

Citations:

Zbl 1155.35353
Full Text: DOI

References:

[1] Li, A.; Li, Y. Y., On some conformally invariant fully nonlinear equations, Comm. Pure Appl. Math., 56, 10, 1416-1464 (2003) · Zbl 1155.35353
[2] Viaclovsky, J. A., Conformal geometry, contact geometry, and the calculus of variations, Duke Math. J., 101, 2, 283-316 (2000) · Zbl 0990.53035
[3] Viaclovsky, J. A., Estimates and existence results for some fully nonlinear elliptic equations on Riemannian manifolds, Comm. Anal. Geom., 10, 4, 815-846 (2002) · Zbl 1023.58021
[4] Viaclovsky, J. A., Conformally invariant Monge-Ampère equations: global solutions, Trans. Amer. Math. Soc., 352, 9, 4371-4379 (2000) · Zbl 0951.35044
[5] Li, A.; Li, Y. Y., On some conformally invariant fully nonlinear equations. II. Liouville, Harnack and Yamabe, Acta Math., 195, 117-154 (2005) · Zbl 1216.35038
[6] Li, Y. Y., Degenerate conformally invariant fully nonlinear elliptic equations, Arch. Ration. Mech. Anal., 186, 25-51 (2007) · Zbl 1158.35048
[7] Li, Y. Y., Conformally invariant fully nonlinear elliptic equations and isolated singularities, J. Funct. Anal., 233, 380-425 (2006) · Zbl 1293.35112
[8] Li, Y. Y., Local gradient estimates of solutions to some conformally invariant fully nonlinear equations, Comm. Pure Appl. Math., 62, 10, 1293-1326 (2009) · Zbl 1195.35078
[10] Han, Z. C.; Li, Y. Y.; Teixeira, E. V., Asymptotic behavior of solutions to the \(\sigma_k\)-Yamabe equation near isolated singularities, Invent. Math., 182, 3, 635-684 (2010) · Zbl 1211.53064
[11] Chang, S.-Y. A.; Gursky, M. J.; Yang, P. C., An equation of Monge-Ampère type in conformal geometry, and four-manifolds of positive Ricci curvature, Ann. of Math. (2), 155, 3, 709-787 (2002) · Zbl 1031.53062
[12] Chang, S.-Y. A.; Gursky, M. J.; Yang, P. C., An a priori estimate for a fully nonlinear equation on four-manifolds, J. Anal. Math., 87, 151-186 (2002), Dedicated to the memory of Thomas H. Wolff · Zbl 1067.58028
[13] Chang, S.-Y. A.; Gursky, M. J.; Yang, P. C., Entire solutions of a fully nonlinear equation, (New Stud. Adv. Math.. New Stud. Adv. Math., Lectures on partial differential equations, vol. 2 (2003), Int. Press: Int. Press Somerville, MA), 43-60 · Zbl 1183.53035
[14] Chang, S.-Y. A.; Fang, H., A class of variational functionals in conformal geometry, Int. Math. Res. Not. IMRN, 7, 16 (2008), Art. ID rnn008 · Zbl 1154.53019
[15] Branson, T. P.; Gover, A. R., Variational status of a class of fully nonlinear curvature prescription problems, Calc. Var. Partial Differential Equations, 32, 2, 253-262 (2008) · Zbl 1147.53029
[16] Chang, S.-Y. A.; Han, Z. C.; Yang, P., Classification of singular radial solutions to the \(\sigma_k\) Yamabe equation on annular domains, J. Differential Equations, 216, 2, 482-501 (2005) · Zbl 1135.53025
[17] Chen, S.-Y. S., Local estimates for some fully nonlinear elliptic equations, Int. Math. Res. Not., 55, 3403-3425 (2005) · Zbl 1159.35343
[18] Ge, Y.; Lin, C. S.; Wang, G., On the \(\sigma_2\)-scalar curvature, J. Differential Geom., 84, 1, 45-86 (2010) · Zbl 1207.53049
[19] Ge, Y.; Wang, G., On a fully nonlinear Yamabe problem, Ann. Sci. Éc. Norm. Supér. (4), 39, 4, 569-598 (2006) · Zbl 1121.53027
[20] González, M.d. M., Removability of singularities for a class of fully non-linear elliptic equations, Calc. Var. Partial Differential Equations, 27, 4, 439-466 (2006) · Zbl 1151.35347
[21] González, M.d. M., Singular sets of a class of locally conformally flat manifolds, Duke Math. J., 129, 3, 551-572 (2005) · Zbl 1088.53023
[22] Guan, P.; Wang, G., Geometric inequalities on locally conformally flat manifolds, Duke Math. J., 124, 1, 177-212 (2004) · Zbl 1059.53034
[23] Guan, P.; Wang, G., Local estimates for a class of fully nonlinear equations arising from conformal geometry, Int. Math. Res. Not., 26, 1413-1432 (2003) · Zbl 1042.53021
[24] Guan, P.; Wang, G., A fully nonlinear conformal flow on locally conformally flat manifolds, J. Reine Angew. Math., 557, 219-238 (2003) · Zbl 1033.53058
[25] Gursky, M. J.; Viaclovsky, J. A., Prescribing symmetric functions of the eigenvalues of the Ricci tensor, Ann. of Math. (2), 166, 2, 475-531 (2007) · Zbl 1142.53027
[26] Gursky, M. J.; Viaclovsky, J. A., Convexity and singularities of curvature equations in conformal geometry, Int. Math. Res. Not., 43 (2006), Art. ID 96890 · Zbl 1132.53020
[27] Gursky, M. J.; Viaclovsky, J. A., A new variational characterization of three-dimensional space forms, Invent. Math., 145, 2, 251-278 (2001) · Zbl 1006.58008
[28] Han, Z. C., A Kazdan-Warner type identity for the \(\sigma_k\) curvature, C. R. Math. Acad. Sci. Paris, 342, 7, 475-478 (2006) · Zbl 1099.53028
[29] Han, Z. C., Local pointwise estimates for solutions of the \(\sigma_2\) curvature equation on 4-manifolds, Int. Math. Res. Not., 79, 4269-4292 (2004) · Zbl 1086.58018
[32] Sheng, W. M.; Trudinger, N. S.; Wang, X.-J., The Yamabe problem for higher order curvatures, J. Differential Geom., 77, 3, 515-553 (2007) · Zbl 1133.53035
[33] Trudinger, N. S.; Wang, X.-J., On Harnack inequalities and singularities of admissible metrics in the Yamabe problem, Calc. Var. Partial Differential Equations, 35, 3, 317-338 (2009) · Zbl 1163.53327
[34] Trudinger, N. S.; Wang, X.-J., The intermediate case of the Yamabe problem for higher order curvatures, Int. Math. Res. Not. IMRN, 13, 2437-2458 (2010) · Zbl 1194.53033
[35] Wang, X.-J., A priori estimates and existence for a class of fully nonlinear elliptic equations in conformal geometry, Chinese Ann. Math. Ser. B, 27, 2, 169-178 (2006) · Zbl 1104.53035
[37] Alexakis, S., On conformally invariant differential operators in odd dimensions, Proc. Natl. Acad. Sci. USA, 100, 8, 4409-4410 (2003) · Zbl 1070.58028
[38] Eastwood, M. G.; Graham, C. R., Invariants of conformal densities, Duke Math. J., 63, 3, 633-671 (1991) · Zbl 0745.53007
[39] Bailey, T. N.; Eastwood, M. G.; Graham, C. R., Invariant theory for conformal and CR geometry, Ann. of Math., 139, 3, 491-552 (1994) · Zbl 0814.53017
[40] Branson, T. P., Conformally covariant equations on differential forms, Comm. Partial Differential Equations, 7, 4, 393-431 (1982) · Zbl 0532.53021
[41] Branson, T. P., Differential operators canonically associated to a conformal structure, Math. Scand., 57, 2, 293-345 (1985) · Zbl 0596.53009
[42] Alexakis, S., On the decomposition of global conformal invariants. I, Ann. of Math. (2), 170, 3, 1241-1306 (2009) · Zbl 1190.53028
[43] Baston, R. J., Verma modules and differential conformal invariants, J. Differential Geom., 32, 3, 851-898 (1990) · Zbl 0732.53011
[44] Eastwood, M. G.; Rice, J. W., Conformally invariant differential operators on Minkowski space and their curved analogues, Comm. Math. Phys., 109, 2, 207-228 (1987) · Zbl 0659.53047
[45] Eastwood, M., Higher symmetries of the Laplacian, Ann. of Math. (2), 161, 3, 1645-1665 (2005) · Zbl 1091.53020
[46] Gover, A. R.; Peterson, L. J., Conformally invariant powers of the Laplacian, \(Q\)-curvature, and tractor calculus, Comm. Math. Phys., 235, 2, 339-378 (2003) · Zbl 1022.58014
[47] Chang, S.-Y. A.; Gursky, M. J.; Yang, P. C., Regularity of a fourth order nonlinear PDE with critical exponent, Amer. J. Math., 121, 2, 215-257 (1999) · Zbl 0921.35032
[48] Chang, S.-Y. A.; Yang, P. C., Extremal metrics of zeta function determinants on 4-manifolds, Ann. of Math. (2), 142, 1, 171-212 (1995) · Zbl 0842.58011
[49] Djadli, Z.; Malchiodi, A., Existence of conformal metrics with constant \(Q\)-curvature, Ann. of Math. (2), 168, 3, 813-858 (2008) · Zbl 1186.53050
[50] Gursky, M. J.; Viaclovsky, J. A., A fully nonlinear equation on four-manifolds with positive scalar curvature, J. Differential Geom., 63, 1, 131-154 (2003) · Zbl 1070.53018
[51] Graham, C. R.; Jenne, R.; Mason, L. J.; Sparling, G. A.J., Conformally invariant powers of the Laplacian. I. Existence, J. Lond. Math. Soc. (2), 46, 3, 557-565 (1992) · Zbl 0726.53010
[53] Fefferman, C.; Graham, C. R., \(Q\)-curvature and Poincaré metrics, Math. Res. Lett., 9, 2-3, 139-151 (2002) · Zbl 1016.53031
[54] Graham, C. R.; Zworski, M., Scattering matrix in conformal geometry, Invent. Math., 152, 1, 89-118 (2003) · Zbl 1030.58022
[55] Chang, S.-Y. A.; González, M.d. M., Fractional Laplacian in conformal geometry, Adv. Math., 226, 2, 1410-1432 (2011) · Zbl 1214.26005
[56] Peterson, L. J., Conformally covariant pseudo-differential operators, Differential Geom. Appl., 13, 2, 197-211 (2000) · Zbl 0985.53007
[57] Li, Y. Y.; Monticelli, D. D., On fully nonlinear CR invariant equations on the Heisenberg group, J. Differential Equations, 252, 1309-1349 (2012) · Zbl 1235.32026
[59] Kobayashi, S., Transformation Groups in Differential Geometry (1972), Springer-Verlag: Springer-Verlag New York, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 70 · Zbl 0246.53031
[60] Li, Y. Y.; Mastrolia, P.; Monticelli, D. D., On conformally invariant equations on \(R^n\). II. exponential invariance, Nonlinear Anal., 75, 13, 5194-5211 (2012) · Zbl 1250.35068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.