×

Variational status of a class of fully nonlinear curvature prescription problems. (English) Zbl 1147.53029

Let \(A\) be a linear endomorphism of an \(n\)-dimensional real vector space. The \(k\)-th elementary symmetric polynomial \(\sigma_k(A)\) of \(A\) is, up to a nonzero constant factor, the coefficient of \(\lambda^{n-k}\) in the determinant of \(\lambda\operatorname{Id}-A\). Let \((M,g)\) be a Riemannian manifold of dimension \(n\geq 3\) and \(R\) its Riemannian curvature tensor field. Then \(R=W+P\odot g\), where \(W\) is the Weyl conformal curvature tensor field, \(P:=\frac{1}{n-2}[\text{Ric}-\frac{1}{2(n-1)}\operatorname{Scal}g]\) is the Schouten tensor field, Ric the Ricci tensor field, Scal the scalar curvature and \(\odot\) denotes the Kulkarni-Nomizu product. \(P\) yields, via the metric, a section of \(\text{End}(TM)\) and so one may speak of the scalar invariants \(\sigma_k(P)\). For example, \(\sigma_1(P)=\frac{\text{Scal}}{2(n-1)}\) and \(\sigma_2(P)=\frac{1}{2}[\frac{\text{Scal}^2}{4(n-1)^2}-| P| ^2]\). For a given fixed \(k\) \((1\leq k\leq n)\), the \(\sigma_k\)-Yamabe problem is to find, within a conformal class of metrics on \(M\), a metric for which \(\sigma_k(P)\) is constant.
Recently there has been significant interest and progress in the study of this problem and related curvature prescription problems [see for example, J. Viaclovsky, Duke Math. J. 101, 283–316 (2000; Zbl 0990.53035); S.-Y. A. Chang, M. Gursky and P. Yang, J. Anal. Math. 87, 151–186 (2002; Zbl 1067.58028); M. Gursky and J. Viaclovsky, Ann. Math. (2) 166, No. 2, 475–531 (2007; Zbl 1142.53027); A. Li and Y. Y. Li, Acta Math. 195, 117–154 (2005; Zbl 1216.35038); P. Guan and G. Wang, J. Reine Angew. Math. 557, 219–238 (2003; Zbl 1033.53058)].
For \(k=1\), this is the classical Yamabe problem of prescribing constant scalar curvature, whose solution by Schoen, Aubin, Trudinger, and Yamabe [see J. M. Lee and T. H. Parker, Bull. Am. Math. Soc. 17, 37–91 (1987; Zbl 0633.53062)] was a milestone in global Riemannian geometry. W. Sheng, N. Trudinger and X.-J. Wang [J. Differ. Geom. 77, No. 3, 515–553 (2007; Zbl 1133.53035)] have shown that the equation \(\sigma_k(P)= \text{const}\) has a solution in settings where it is variational, i.e., the Euler-Lagrange equation of some functional (called an action or Lagrangian). This class of settings includes the cases \(k=2\) and when \((M,g)\) is conformally flat [see also J. Viaclovsky, op. cit.].
For \(3\leq k\leq n\), the authors prove that on an \(n\)-dimensional compact Riemannian manifold, the quantity \(\sigma_k(P)\) is variational in a conformal class of metrics \(\mathcal{C}\) if and only if \(\mathcal{C}\) is locally flat. In the cases where \(\sigma_{\frac{n}{2}}(P)\) (\(n\) even) is variational, they show that the problem of explicitly finding an action is related to the problem of finding an action for the \(Q\)-curvature [for the definition of this concept see the first author [The functional determinant, Lecture Notes Series, Seoul. 4. Seoul: Seoul National University (1993; Zbl 0827.58057)], the case of dimensions \(4\) and \(6\) being treated explicitly.

MSC:

53C20 Global Riemannian geometry, including pinching
35J50 Variational methods for elliptic systems
35J60 Nonlinear elliptic equations

References:

[1] Branson, T.: Differential operators canonically associated to a conformal structure. Math. Scand. 57, 293–345 (1985) · Zbl 0596.53009
[2] Branson, T.: The Functional Determinant. In: Global Analysis Research Center Lecture Note Series, vol. 4. Seoul National University (1993) · Zbl 0827.58057
[3] Branson, T., Gilkey, P., Pohjanpelto, J.: Invariants of conformally flat manifolds. Trans. Am. Math. Soc. 347, 939–954 (1995) · Zbl 0820.53022 · doi:10.2307/2154879
[4] Branson, T., Gover, A.R.: Pontrjagin forms and invariant objects related to the Q-curvature. Commun. Contemp. Math. 9, 335–358 (2007). Electronic math.DG/0511311, http://www.arxiv.org · Zbl 1125.53024
[5] Branson, T., Ørsted, B.: Explicit functional determinants in four dimensions. Proc. Am. Math. Soc. 113, 671–684 (1991) · Zbl 0762.47019 · doi:10.1090/S0002-9939-1991-1050018-8
[6] Brendle, S., Viaclovsky, J.: A variational characterisation for {\(\sigma\)} n/2. Calc. Var. 20, 399–402 (2004) · Zbl 1059.53033
[7] Chang, S.-Y.A., Gursky, M., Yang, P.: An a priori estimate for a fully nonlinear equation on four-manifolds. J. Anal. Math. 87, 151–186 (2002) · Zbl 1067.58028 · doi:10.1007/BF02868472
[8] Gover, A.R.: Invariant theory and calculus for conformal geometries. Adv. Math. 163(2), 206–257 (2001) · Zbl 1004.53010 · doi:10.1006/aima.2001.1999
[9] Gover, A.R., Peterson, L.J.: Conformally invariant powers of the Laplacian, Q-curvature, and tractor calculus. Commun. Math. Phys. 235, 339–378 (2003) math-ph/0201030 · Zbl 1022.58014 · doi:10.1007/s00220-002-0790-4
[10] Graham, C.R., Jenne, R., Mason, L.J., Sparling, G.A.: Conformally invariant powers of the Laplacian, I: Existence. J. Lond. Math. Soc. 46, 557–565 (1992) · doi:10.1112/jlms/s2-46.3.557
[11] Guan, P., Wang, G.: A fully nonlinear conformal flow on locally conformally flat manifolds. J. Reine Angew. Math. 557, 219–238 (2003) · Zbl 1033.53058 · doi:10.1515/crll.2003.033
[12] Gursky, M., Viaclovsky, J.: Prescribing symmetric functions of the eigenvalues of the Ricci tensor. Ann. Math. (2007, to appear). Electronic math.DG/0409187, http://www.arxiv.org . · Zbl 1142.53027
[13] Lee, J.M., Parker, T.H.: The Yamabe problem. Bull. Am. Math. Soc. 17, 37–91 (1987) · Zbl 0633.53062 · doi:10.1090/S0273-0979-1987-15514-5
[14] Li, A., Li, Y.Y.: On some conformally invariant fully nonlinear equations II, Liouville, Harnack, and Yamabe. Acta Math. 195, 117–154 (2005) · Zbl 1216.35038 · doi:10.1007/BF02588052
[15] Sheng, W., Trudinger, N., Wang, X.-J.: The Yamabe problem for higher order curvatures. J. Differ. Geom. (2007, to appear). Electronic math.DG/0505463, http://www.arxiv.org . · Zbl 1133.53035
[16] Viaclovsky, J.: Conformal geometry, contact geometry, and the calculus of variations. Duke Math. J. 101, 283–316 (2000) · Zbl 0990.53035 · doi:10.1215/S0012-7094-00-10127-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.