×

Harmonic measures for distributions with finite support on the mapping class group are singular. (English) Zbl 1285.30025

Summary: V. A. Kaimanovich and H. Masur [Invent. Math. 125, No. 2, 221–264 (1996; Zbl 0864.57014)] showed that a random walk on the mapping class group for an initial distribution whose support generates a nonelementary subgroup when projected into Teichmüller space converges almost surely to a point in the space \(\mathcal{PMF}\) of projective measured foliations on the surface. This defines a harmonic measure on \(\mathcal{PMF}\). Here, we show that when the initial distribution has finite support, the corresponding harmonic measure is singular with respect to the natural Lebesgue measure class on \(\mathcal{PMF}\).

MSC:

30F60 Teichmüller theory for Riemann surfaces
32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables)

Citations:

Zbl 0864.57014

References:

[1] B. Bárány, M. Pollicott, and K. Simon, Stationary measures for projective transformations: The Blackwell and Furstenberg measures , J. Stat. Phys. 148 (2012), 393-421. · Zbl 1284.37007 · doi:10.1007/s10955-012-0541-7
[2] C. Boissy and E. Lanneau, Dynamics and geometry of the Rauzy-Veech induction for quadratic differentials , Ergodic Theory Dynam. Systems 29 (2009), 767-816. · Zbl 1195.37030 · doi:10.1017/S0143385708080565
[3] B. H. Bowditch, Tight geodesics in the curve complex , Invent. Math. 171 (2008), 281-300. · Zbl 1185.57011 · doi:10.1007/s00222-007-0081-y
[4] A. I. Bufetov, Decay of correlations for the Rauzy-Veech-Zorich induction map on the space of interval exchange transformations and the central limit theorem for the Teichmüller flow on the moduli space of abelian differentials , J. Amer. Math. Soc. 19 (2006), 579-623. · Zbl 1100.37002 · doi:10.1090/S0894-0347-06-00528-5
[5] Y. Derriennic, Marche aléatoire sur le groupe libre frontière de Martin , Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 32 (1975), 261-276. · Zbl 0364.60117 · doi:10.1007/BF00535840
[6] B. Deroin, V. Kleptsyn, and A. Navas, On the question of ergodicity of minimal group actions on the circle , Mosc. Math. J. 9 (2009), 263-303. · Zbl 1193.37034
[7] N. Dunfield and D. Thurston, A random tunnel number one \(3\)-manifold does not fiber over the circle , Geom. Topol. 10 (2006), 2431-2499. · Zbl 1139.57018 · doi:10.2140/gt.2006.10.2431
[8] B. Farb and D. Margalit, A Primer on Mapping Class Groups , Princeton Math. Ser. 49 , Princeton Univ. Press, Princeton, 2011. · Zbl 1245.57002
[9] B. Farb and H. Masur, Superrigidity and mapping class groups , Topology 37 (1998), 1169-1176. · Zbl 0946.57018 · doi:10.1016/S0040-9383(97)00099-2
[10] V. S. Gadre, Dynamics of non-classical interval exchanges , Ergodic Theory Dynam. Systems 32 (2012), 1930-1971. · Zbl 1275.37021 · doi:10.1017/S0143385711000691
[11] Y. Guivarc’h and Y. Le Jan, Asymptotic winding of the geodesic flow on modular surfaces and continued fractions , Ann. Sci. Éc. Norm. Supér. (4) 26 , (1993), 23-50. · Zbl 0784.60076
[12] U. Hamenstädt, “Train tracks and the Gromov boundary of the complex of curves” in Spaces of Kleinian Groups , London Math. Soc. Lecture Note Ser. 329 , Cambridge Univ. Press, Cambridge, 2006, 187-207. · Zbl 1117.30036
[13] V. A. Kaimanovich and V. Le Prince, Matrix random products with singular harmonic measure , Geom. Dedicata 150 (2011) 257-279. · Zbl 1226.60105 · doi:10.1007/s10711-010-9504-9
[14] V. A. Kaimanovich and H. Masur, The Poisson boundary of the mapping class group , Invent. Math. 125 (1996), 221-264. · Zbl 0864.57014 · doi:10.1007/s002220050074
[15] S. P. Kerckhoff, Simplicial systems for interval exchange maps and measured foliations , Ergodic Theory Dynam. Systems 5 (1985), 257-271. · Zbl 0597.58024 · doi:10.1017/S0143385700002881
[16] E. Klarreich, The boundary at infinity of the curve complex , preprint, 1999, . · Zbl 1011.30035
[17] F. Ledrappier, “Applications of dynamics to compact manifolds of negative curvature” in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) , Birkhäuser, Basel, 1995, 1195-1202. · Zbl 0841.53037
[18] R. Lyons, Equivalence of boundary measures on covering trees of finite graphs , Ergodic Theory Dynam. Systems 14 (1994), 575-597. · Zbl 0821.58008 · doi:10.1017/S014338570000804X
[19] J. Maher, Linear progress in the complex of curves , Trans. Amer. Math. Soc. 362 (2010), no. 6, 2963-2991. · Zbl 1232.37023 · doi:10.1090/S0002-9947-10-04903-2
[20] J. Maher, Random Heegard splittings , J. Topol. 3 (2010), 997-1025. · Zbl 1207.37027 · doi:10.1112/jtopol/jtq031
[21] J. Maher, Random walks on the mapping class group , Duke Math. J. 156 (2011), 429-468. · Zbl 1213.37072 · doi:10.1215/00127094-2010-216
[22] J. Maher, Harmonic measure for subsurface projections , personal communication, 2009.
[23] H. A. Masur, Interval exchange transformations and measured foliations , Ann. of Math. (2) 115 (1982), 169-200. · Zbl 0497.28012 · doi:10.2307/1971341
[24] H. A. Masur and Y. N. Minsky, Geometry of the complex of curves, I: Hyperbolicity , Invent. Math. 138 (1999), 103-149. · Zbl 0941.32012 · doi:10.1007/s002220050343
[25] H. A. Masur and Y. N. Minsky, Geometry of the complex of curves, II: Hierarchical structure , Geom. Funct. Anal. 10 (2000), 902-974. · Zbl 0972.32011 · doi:10.1007/PL00001643
[26] H. A. Masur, L. Mosher, and S. Schleimer, On train-track splitting sequences , Duke Math. J. 161 (2012), 1613-1656. · Zbl 1275.57029 · doi:10.1215/00127094-1593344
[27] C. McMullen, Barycentric subdivision and aspect ratios of triangles , personal communication, 2010.
[28] R. C. Penner and J. L. Harer, Combinatorics of Train Tracks Ann. of Math. Stud. 125 , Princeton Univ. Press, Princeton, 1992. · Zbl 0765.57001
[29] Y. Peres and B. Solomyak, Absolute continuity of Bernoulli convolutions, a simple proof , Math. Res. Lett. 3 (1996), 231-239. · Zbl 0867.28001 · doi:10.4310/MRL.1996.v3.n2.a8
[30] B. Solomyak, On the random series \(\sum\pm\lambda^{n}\) (an Erdös problem) , Ann. of Math. (2) 142 (1995), 611-625. · Zbl 0837.28007 · doi:10.2307/2118556
[31] D. W. Stroock, Probability Theory, an Analytic View , Cambridge Univ. Press, Cambridge, 1993. · Zbl 0925.60004
[32] W. Woess, Random Walks on Infinite Graphs and Groups , Cambridge Tracts Math. 138 , Cambridge Univ. Press, Cambridge, 2000. · Zbl 0951.60002 · doi:10.1017/CBO9780511470967
[33] J.-C. Yoccoz, “Continued fraction algorithms for interval exchange maps: An introduction” in Frontiers in Number Theory, Physics, and Geometry. I , Springer, Berlin, 2006, 401-435. · Zbl 1127.28011 · doi:10.1007/978-3-540-31347-2_12
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.