×

Dynamics and geometry of the Rauzy-Veech induction for quadratic differentials. (English) Zbl 1195.37030

The Rauzy-Veech induction on the space of interval exchange transformations provides a discretization of the Teichmüller geodesic flow on the moduli space of abelian differentials. Over the last few years, the Rauzy-Veech induction proved to be very powerful in analysing this geodesic flow.
The article under review studies an analogue of the Rauzy-Veech induction for the Teichmüller geodesic flow on the moduli space of quadratic differentials. The role of interval exchange transformations is taken by linear involutions, a notion introduced by C. Danthony and A. Nogueira [C. R. Acad. Sci., Paris, Sér. I 307, No. 8, 409–412 (1988; Zbl 0672.57016)]. Analogously to interval exchange transformations, linear involutions are given by a combinatorial datum (so-called generalized permutations) and continuous data. A generalized permutation is a two-to-one map from a finite set to a set of half cardinality.
The authors develop an algorithm to test whether a given generalized permutation is the combinatorial datum of a linear involution arising from a cross section of the vertical foliation of some quadratic differential. Generalized permutations with this property are called irreducible. They show that the set of irreducible generalized permutations is an attractor for the Rauzy-Veech induction, and moreover, that there is no smaller attractor. More precisely, they prove that the extended Rauzy classes of irreducible generalized permutations are in bijection with the connected component of strata in the moduli spaces of quadratic differentials.

MSC:

37F30 Quasiconformal methods and Teichmüller theory, etc. (dynamical systems) (MSC2010)
37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)

Citations:

Zbl 0672.57016

References:

[1] DOI: 10.1007/BF02790174 · Zbl 0455.28006 · doi:10.1007/BF02790174
[2] DOI: 10.2307/1971391 · Zbl 0486.28014 · doi:10.2307/1971391
[3] DOI: 10.1017/S0143385700005150 · Zbl 0697.58027 · doi:10.1017/S0143385700005150
[4] Masur, Rational Billiards and Flat Structures pp 1015– (2002)
[5] DOI: 10.2307/1971341 · Zbl 0497.28012 · doi:10.2307/1971341
[6] Danthony, Ann. Sci. École Norm. Sup. (4) 23 pp 469– (1990)
[7] DOI: 10.1090/S0894-0347-05-00490-X · Zbl 1112.37002 · doi:10.1090/S0894-0347-05-00490-X
[8] Danthony, C. R. Acad. Sci. Paris Sér. I Math. 307 pp 409– (1988)
[9] Lanneau, Ann. Sci. École Norm. Sup. (4) 41 pp 1– (2008)
[10] DOI: 10.1007/s00222-003-0303-x · Zbl 1087.32010 · doi:10.1007/s00222-003-0303-x
[11] DOI: 10.2140/gt.2008.12.1345 · Zbl 1146.30020 · doi:10.2140/gt.2008.12.1345
[12] DOI: 10.1007/s11511-007-0012-1 · Zbl 1143.37001 · doi:10.1007/s11511-007-0012-1
[13] DOI: 10.1007/BF01236981 · Zbl 0278.28010 · doi:10.1007/BF01236981
[14] Avila, Publ. Math. Inst. Hautes Études Sci. 104 pp 143– (2006) · Zbl 1263.37051 · doi:10.1007/s10240-006-0001-5
[15] DOI: 10.4007/annals.2007.165.637 · Zbl 1136.37003 · doi:10.4007/annals.2007.165.637
[16] Arnoux, Enseign. Math. (2) 40 pp 29– (1994)
[17] Zorich, J. Mod. Dyn. 1 pp 139– (2008)
[18] Zorich, Ann. Inst. Fourier 46 pp 325– (1996) · Zbl 0853.28007 · doi:10.5802/aif.1517
[19] Yoccoz, Frontiers in Number Theory, Physics and Geometry (2006)
[20] DOI: 10.1007/BF02789200 · Zbl 0722.30032 · doi:10.1007/BF02789200
[21] DOI: 10.2307/2007091 · Zbl 0658.32016 · doi:10.2307/2007091
[22] Rauzy, Acta Arith. 34 pp 315– (1979)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.