×

Propagation of multiplicity-freeness property for holomorphic vector bundles. (English) Zbl 1284.32011

Huckleberry, Alan (ed.) et al., Lie groups: structure, actions, and representations. In honor of Joseph A. Wolf on the occasion of his 75th birthday. New York, NY: Birkhäuser/Springer (ISBN 978-1-4614-7192-9/hbk; 978-1-4614-7193-6/ebook). Progress in Mathematics 306, 113-140 (2013).
Summary: We give a complete proof of a propagation theorem of the multiplicity-free property from fibers to spaces of global sections of holomorphic vector bundles. The propagation theorem is formulated in three ways, aiming for producing various multiplicity-free theorems in representation theory for both finite and infinite dimensional cases in a systematic and synthetic manner. The key geometric condition in our theorem is an orbit-preserving anti-holomorphic diffeomorphism on the base space, which brings us to the concept of visible actions on complex manifolds.
For the entire collection see [Zbl 1276.00017].

MSC:

32M10 Homogeneous complex manifolds
32M05 Complex Lie groups, group actions on complex spaces
22E46 Semisimple Lie groups and their representations
32L05 Holomorphic bundles and generalizations

References:

[1] Alikawa, H., Multiplicity-free branching rules for outer automorphisms of simple Lie groups, J. Math. Soc. Japan, 59, 151-177 (2007) · Zbl 1136.17005
[2] C. Benson and G. Ratcliff, On multiplicity free actions. In:Representations of real and p-adic groups, 221-304, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 2, Singapore Univ. Press, Singapore, 2004. · Zbl 1061.22017
[3] Dadok, J., Polar coordinates induced by actions of compact Lie groups, Trans. Amer. Math. Soc., 288, 125-137 (1985) · Zbl 0565.22010
[4] Deitmar, A., Invariant operators on higher K-types, J. Reine Angew. Math., 412, 97-107 (1990) · Zbl 0712.43006
[5] Dijk, G.; Hille, S. C., Canonical representations related to hyperbolic spaces, J. Funct. Anal., 147, 109-139 (1997) · Zbl 0882.22017
[6] Faraut, J.; Thomas, E. G. F., Invariant Hilbert spaces of holomorphic functions, J. Lie Theory, 9, 383-402 (1999) · Zbl 1014.32005
[7] Guillemin, V.; Sternberg, S., Multiplicity-free spaces, J. Diff. Geom., 19, 31-56 (1984) · Zbl 0548.58017
[8] Hecht, H.; Miličić, D.; Schmid, W.; Wolf, J. A., Localization and standard modules for real semisimple Lie groups. I. The duality theorem, Invent. Math., 90, 297-332 (1987) · Zbl 0699.22022
[9] Heintze, E.; Palais, R. S.; Terng, C.-L.; Thorbergsson, G., Hyperpolar actions on symmetric spaces, in: Geometry, Topology, and Physics, 214-245 (1995), Conf. Proc. Lecture Notes Geom. Topology: IV, International Press, Cambridge, MA, Conf. Proc. Lecture Notes Geom. Topology · Zbl 0871.57035
[10] Huckleberry, A. T.; Wurzbacher, T., Multiplicity-free complex manifolds, Math. Ann., 286, 261-280 (1990) · Zbl 0765.32016
[11] Kobayashi, S., Irreducibility of certain unitary representations, J. Math. Soc. Japan, 20, 638-642 (1968) · Zbl 0165.40504
[12] T. Kobayashi, Multiplicity-free theorem in branching problems of unitary highest weight modules, Proceedings of the Symposium on Representation Theory held at Saga, Kyushu 1997 (ed. K. Mimachi), (1997), 9-17.
[13] , Geometry of multiplicity-free representations of GL(n), visible actions on flag varieties, and triunity, Acta Appl. Math.81 (2004), 129-146. · Zbl 1050.22018
[14] , Multiplicity-free representations and visible actions on complex manifolds, Publ. RIMS41 (2005), 497-549 (a special issue of Publications of RIMS commemorating the fortieth anniversary of the founding of the Research Institute for Mathematical Sciences). · Zbl 1085.22010
[15] , Multiplicity-free theorems of the restriction of unitary highest weight modules with respect to reductive symmetric pairs, In: Representation Theory and Automorphic Forms, Prog. Math. 255 Birkhäuser (2007), 45-109.
[16] , Visible actions on symmetric spaces, Transform. Groups12 (2007), 671-694. · Zbl 1147.53041
[17] , A generalized Cartan decomposition for the double coset space (U(n_1) ×U(n_2) \( \times U(n_3))\setminus U(n)/(U(p) \times U(q))\) , J. Math. Soc. Japan59 (2007), 669-691. · Zbl 1124.22003
[18] , Restrictions of generalized Verma modules to symmetric pairs, Transform. Groups, 17 (2012), 523-546. · Zbl 1257.22014
[19] , Branching problems of Zuckerman derived functor modules, In: Representation theory and mathematical physics, (Proc. Conference in honor of Gregg Zuckerman’s 60th birthday, Yale, 2010), 23-40, Contemp. Math., 557, Amer. Math. Soc., Providence, RI, 2011, (cf. arXiv:1104:4399). · Zbl 1236.22006
[20] Krattenthaler, C., Identities for classical group characters of nearly rectangular shape, J. Algebra, 209, 1-64 (1998) · Zbl 0914.20038
[21] Mackey, G. W., Induced representations of locally compact groups I, Annals of Math., 55, 101-139 (1952) · Zbl 0046.11601
[22] Neeb, K.-H., On some classes of multiplicity free representations, Manuscripta Math., 92, 389-407 (1997) · Zbl 0882.43002
[23] Neeb, K-H., Towards a Lie theory of locally convex groups, Jpn. J. Math., 1, 291-468 (2006) · Zbl 1161.22012
[24] Okada, S., Applications of minor summation formulas to rectangular-shaped representations of classical groups, J. Algebra, 205, 337-367 (1998) · Zbl 0915.20023
[25] Podestà, F.; Thorbergsson, G., Polar and coisotropic actions on Kähler manifolds, Trans. Amer. Math. Soc., 354, 1759-1781 (2002) · Zbl 0997.53053
[26] A. Sasaki, Visible actions on irreducible multiplicity-free spaces, Int. Math. Res. Not. IMRN 2009, no. 18, 3445-3466. · Zbl 1180.32006
[27] , A characterization of non-tube type Hermitian symmetric spaces by visible actions, Geom. Dedicata145 (2010), 151-158. · Zbl 1190.32017
[28] , Visible actions on reducible multiplicitiy-free spaces, Int. Math. Res. Not. IMRN 2011, no. 4, 885-929. · Zbl 1217.32008
[29] W. Schmid, Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen, Invent. Math.9 (1969-70), 61-80. · Zbl 0219.32013
[30] H. Sekiguchi, Branching rules of Dolbealt cohomology groups over indefinite Grassmannian manifolds, Proc. Japan Acad. Ser A. Math. Sci. 87 (2011), 31-34. · Zbl 1227.22017
[31] Stembridge, J. R., Multiplicity-free products of Schur functions, Ann. Comb., 5, 113-121 (2001) · Zbl 0990.05130
[32] Vogan, D. A., Unitarizability of certain series of representations, Ann. Math., 120, 141-187 (1984) · Zbl 0561.22010
[33] Wallach, N. R., On the unitarizability of derived functor modules, Invent. Math., 78, 131-141 (1984) · Zbl 0547.22008
[34] J. Wolf, Representations that remain irreducible on parabolic subgroups. In: Differential geometrical methods in mathematical physics (Proc. Conf., Aix-en-Provence/Salamanca, 1979), pp. 129-144, Lecture Notes in Math. 836, Springer, Berlin, 1980. · Zbl 0449.22016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.