×

A characterization of non-tube type Hermitian symmetric spaces by visible actions. (English) Zbl 1190.32017

A holomorphic action of a Lie group \(H\) on a connected complex manifold \(D\) is called strongly visible in the sense of T. Kobayashi [Publ. Res. Inst. Math. Sci 41, No. 3, 497–549 (2005; Zbl 1085.22010)] if there exists a real submanifold \(S\) (called a slice) in \(D\) and an anti-holomorphic diffeomorphism \(\sigma\) of \(D\) such that \(D=H\cdot S\), \(\sigma|_S = \text{id}_S\), and \(\sigma\) preserves each \(H\)-orbit in \(D\). Let \(G/K\) be an irreducible Hermitian symmetric space of non-compact type, \(G_{\mathbb C}/K_{\mathbb C}\) its complexification by forgetting the original complex structure. Then \(D:= G_{\mathbb C}/[K_{\mathbb C},K_{\mathbb C}]\) is a non-symmetric Stein manifold.
In the paper, the author proves that a maximal compact subgroup of \(G_{\mathbb C}\) acts on \(D\) in a strongly visible fashion if and only if \(G/K\) is of non-tube type. The proof uses the theory of multiplicity-free representations and the construction of a slice and an anti-holomorphic involution on \(D\).

MSC:

32M15 Hermitian symmetric spaces, bounded symmetric domains, Jordan algebras (complex-analytic aspects)
22E46 Semisimple Lie groups and their representations
32A07 Special domains in \({\mathbb C}^n\) (Reinhardt, Hartogs, circular, tube) (MSC2010)
20G05 Representation theory for linear algebraic groups

Citations:

Zbl 1085.22010
Full Text: DOI

References:

[1] Flensted-Jensen M.: Spherical functions on a simply connected semisimple Lie group. Am. J. Math. 99, 341–361 (1977) · Zbl 0372.43005 · doi:10.2307/2373823
[2] Flensted-Jensen M.: Spherical functions of a real semisimple Lie group. A method of reduction to the complex case. J. Funct. Anal. 30, 106–146 (1978) · Zbl 0419.22019 · doi:10.1016/0022-1236(78)90058-7
[3] Knapp, A.W.: Lie groups beyond an introduction, 2nd edition. Progress in Mathematics 140, Birkhäuser, Boston (2002) · Zbl 1075.22501
[4] Kobayashi T.: Discrete decomposability of the restriction of \({A_{\mathfrak{q}}(\lambda )}\) with respect to reductive subgroups. Part I. Invent. Math. 117, 181–205 (1994) · Zbl 0826.22015 · doi:10.1007/BF01232239
[5] Kobayashi T.: Discrete decomposability of the restriction of \({A_{\mathfrak{q}}(\lambda )}\) with respect to reductive subgroups. Part II. Ann. Math. 147, 709–729 (1998) · Zbl 0910.22016
[6] Kobayashi T.: Discrete decomposability of the restriction of \({A_{\mathfrak{q}}(\lambda )}\) with respect to reductive subgroups. Part III. Invent. Math. 131, 229–256 (1998) · Zbl 0907.22016 · doi:10.1007/s002220050203
[7] Kobayashi T.: Geometry of multiplicity-free representations of GL(n), visible actions on flag varieties, and triunity. Acta. Appl. Math. 81, 129–146 (2004) · Zbl 1050.22018 · doi:10.1023/B:ACAP.0000024198.46928.0c
[8] Kobayashi, T.: Multiplicity-free representations and visible actions on complex manifolds. Publ. Res. Inst. Math. Sci. 41, 497–549 (2005), special issue commemorating the fortieth anniversary of the founding of RIMS · Zbl 1085.22010
[9] Kobayashi T.: A generalized Cartan decomposition for the double coset space (U(n 1) {\(\times\)} U(n 2) {\(\times\)} U(n 3))\(\backslash\) U(n)/(U(p) {\(\times\)} U(q)). J. Math. Soc. Japan 59, 669–691 (2007) · Zbl 1124.22003 · doi:10.2969/jmsj/05930669
[10] Kobayashi T.: Visible actions on symmetric spaces. Transform. Group 12, 671–694 (2007) · Zbl 1147.53041 · doi:10.1007/s00031-007-0057-4
[11] Kobayashi, T.: Propagation of multiplicity-free property for holomorphic vector bundles. math.RT/0607004 · Zbl 1284.32011
[12] Korányi A., Wolf J.A.: Realization of Hermitian symmetric spaces as generalized half-planes. Ann. Math. 81, 265–288 (1965) · Zbl 0137.27402 · doi:10.2307/1970616
[13] Krämer M.: Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen. Compositio Math. 38, 129–153 (1979) · Zbl 0402.22006
[14] Matsushima Y.: Espaces homogènes de Stein des groupes de Lie complexes. Nagoya Math. J. 16, 205–218 (1960) · Zbl 0094.28201
[15] Sasaki, A.: Visible actions on irreducible multiplicity-free spaces. Int. Math. Res. Not. (2009). doi: 10.1093/imrn/rnp060 · Zbl 1180.32006
[16] Vinberg É.B., Kimelfeld B.N.: Homogeneous domains on flag manifolds and spherical subgroups of semisimple Lie groups. Funct. Anal. Appl. 12, 168–174 (1978) · Zbl 0439.53055 · doi:10.1007/BF01681428
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.