×

On existence of global solutions of Schrödinger equations with subcritical nonlinearity for \(\widehat L^p\)-initial data. (English) Zbl 1283.35126

Summary: We construct a local theory of the Cauchy problem for the nonlinear Schrödinger equations \[ \begin{aligned} & iu_t + u_{xx}\pm| u|^{{\alpha }-1}u =0,\quad x\in\mathbb R,\quad t\in\mathbb R,\\ & u(0,x)=u_0 (x)\end{aligned} \] with \(\alpha\in (1,5)\) and \(u_0\in\widehat {L}^p(\mathbb R)\) when \(p\) lies in an open neighborhood of 2. Moreover we prove the global existence for the initial value problem when \(p\) is sufficiently close to 2.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35Q41 Time-dependent Schrödinger equations and Dirac equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
Full Text: DOI

References:

[1] J. Bourgain, Global solutions of nonlinear Schrödinger equations, American Mathematical Society Colloquium Publications, vol. 46, American Mathematical Society, Providence, RI, 1999. · Zbl 0933.35178
[2] Thierry Cazenave, Luis Vega, and Mari Cruz Vilela, A note on the nonlinear Schrödinger equation in weak \?^{\?} spaces, Commun. Contemp. Math. 3 (2001), no. 1, 153 – 162. · Zbl 0991.35084 · doi:10.1142/S0219199701000317
[3] Charles Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9 – 36. · Zbl 0188.42601 · doi:10.1007/BF02394567
[4] Axel Grünrock, An improved local well-posedness result for the modified KdV equation, Int. Math. Res. Not. 61 (2004), 3287 – 3308. · Zbl 1072.35161 · doi:10.1155/S1073792804140981
[5] Axel Grünrock, Bi- and trilinear Schrödinger estimates in one space dimension with applications to cubic NLS and DNLS, Int. Math. Res. Not. 41 (2005), 2525 – 2558. · Zbl 1088.35063 · doi:10.1155/IMRN.2005.2525
[6] Ryosuke Hyakuna, Takamasa Tanaka, and Masayoshi Tsutsumi, On the global well-posedness for the linear Schrödinger equations with large initial data of infinite \?² norm, Nonlinear Anal. 74 (2011), no. 4, 1304 – 1319. · Zbl 1206.35228 · doi:10.1016/j.na.2010.10.003
[7] Tosio Kato, An \?^{\?,\?}-theory for nonlinear Schrödinger equations, Spectral and scattering theory and applications, Adv. Stud. Pure Math., vol. 23, Math. Soc. Japan, Tokyo, 1994, pp. 223 – 238. · Zbl 0832.35131
[8] Tosio Kato, Nonlinear Schrödinger equations, Schrödinger operators (Sønderborg, 1988) Lecture Notes in Phys., vol. 345, Springer, Berlin, 1989, pp. 218 – 263. · Zbl 0698.35131 · doi:10.1007/3-540-51783-9_22
[9] H. Triebel, Interpolation theory, function spaces, differential operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. Hans Triebel, Interpolation theory, function spaces, differential operators, North-Holland Mathematical Library, vol. 18, North-Holland Publishing Co., Amsterdam-New York, 1978.
[10] Yoshio Tsutsumi, \?²-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial. Ekvac. 30 (1987), no. 1, 115 – 125. · Zbl 0638.35021
[11] M. C. Vilela, Inhomogeneous Strichartz estimates for the Schrödinger equation, Trans. Amer. Math. Soc. 359 (2007), no. 5, 2123 – 2136. · Zbl 1196.35074
[12] Ana Vargas and Luis Vega, Global wellposedness for 1D non-linear Schrödinger equation for data with an infinite \?² norm, J. Math. Pures Appl. (9) 80 (2001), no. 10, 1029 – 1044 (English, with English and French summaries). · Zbl 1027.35134 · doi:10.1016/S0021-7824(01)01224-7
[13] Yi Zhou, Cauchy problem of nonlinear Schrödinger equation with initial data in Sobolev space \?^{\?,\?} for \?<2, Trans. Amer. Math. Soc. 362 (2010), no. 9, 4683 – 4694. · Zbl 1198.35264
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.