×

Cauchy problem of nonlinear Schrödinger equation with initial data in Sobolev space \(W^{s,p}\) for \(p<2\). (English) Zbl 1198.35264

Summary: We consider in \(\mathbb R^n\) the Cauchy problem for the nonlinear Schrödinger equation with initial data in the Sobolev space \(W^{s,p}\) for \(p<2\). It is well known that this problem is ill posed. However, we show that, after a linear transformation by the linear semigroup, the problem becomes locally well posed in \(W^{s,p}\) for \(\frac{2n}{n+1}<p<2\) and \(s>n(1-\frac{1}{p})\). Moreover, we show that, in one space dimension, the problem is locally well posed in \(L^p\) for any \(1<p<2\).

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35Q41 Time-dependent Schrödinger equations and Dirac equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics

References:

[1] Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Springer-Verlag, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, No. 223. · Zbl 0344.46071
[2] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), no. 2, 107 – 156. , https://doi.org/10.1007/BF01896020 J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation, Geom. Funct. Anal. 3 (1993), no. 3, 209 – 262. · Zbl 0787.35098 · doi:10.1007/BF01895688
[3] Thierry Cazenave, Luis Vega, and Mari Cruz Vilela, A note on the nonlinear Schrödinger equation in weak \?^{\?} spaces, Commun. Contemp. Math. 3 (2001), no. 1, 153 – 162. · Zbl 0991.35084 · doi:10.1142/S0219199701000317
[4] Thierry Cazenave and Fred B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in \?^{\?}, Nonlinear Anal. 14 (1990), no. 10, 807 – 836. · Zbl 0706.35127 · doi:10.1016/0362-546X(90)90023-A
[5] Michael Christ, James Colliander, and Terence Tao, A priori bounds and weak solutions for the nonlinear Schrödinger equation in Sobolev spaces of negative order, J. Funct. Anal. 254 (2008), no. 2, 368 – 395. · Zbl 1136.35087 · doi:10.1016/j.jfa.2007.09.005
[6] Axel Grünrock, Bi- and trilinear Schrödinger estimates in one space dimension with applications to cubic NLS and DNLS, Int. Math. Res. Not. 41 (2005), 2525 – 2558. · Zbl 1088.35063 · doi:10.1155/IMRN.2005.2525
[7] S. Klainerman, Remarks on the global Sobolev inequalities in the Minkowski space \?\(^{n}\)\(^{+}\)\textonesuperior , Comm. Pure Appl. Math. 40 (1987), no. 1, 111 – 117. · Zbl 0686.46019 · doi:10.1002/cpa.3160400105
[8] Herbert Koch and Daniel Tataru, A priori bounds for the 1D cubic NLS in negative Sobolev spaces, Int. Math. Res. Not. IMRN 16 (2007), Art. ID rnm053, 36. · Zbl 1169.35055 · doi:10.1093/imrn/rnm053
[9] H. P. McKean and J. Shatah, The nonlinear Schrödinger equation and the nonlinear heat equation reduction to linear form, Comm. Pure Appl. Math. 44 (1991), no. 8-9, 1067 – 1080. · Zbl 0773.35075 · doi:10.1002/cpa.3160440817
[10] Yoshio Tsutsumi, \?&sup2;-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial. Ekvac. 30 (1987), no. 1, 115 – 125. · Zbl 0638.35021
[11] Ana Vargas and Luis Vega, Global wellposedness for 1D non-linear Schrödinger equation for data with an infinite \?&sup2; norm, J. Math. Pures Appl. (9) 80 (2001), no. 10, 1029 – 1044 (English, with English and French summaries). · Zbl 1027.35134 · doi:10.1016/S0021-7824(01)01224-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.