×

Portfolio selection with a minimax measure in safety constraint. (English) Zbl 1282.91309

Summary: In this paper, we attempt to design a portfolio optimization model for investors who desire to minimize the variation around the mean return and at the same time wish to achieve better return than the worst possible return realization at every time point in a single period portfolio investment. The portfolio is to be selected from the risky assets in the equity market. Since the minimax portfolio optimization model provides us with the portfolio that maximizes (minimizes) the worst return (worst loss) realization in the investment horizon period, in order to safeguard the interest of investors, the optimal value of the minimax optimization model is used to design a constraint in the mean-absolute semideviation model. This constraint can be viewed as a safety strategy adopted by an investor. Thus, our proposed bi-objective linear programming model involves mean return as a reward and mean-absolute semideviation as a risk in the objective function and minimax as a safety constraint, which enables a trade off between return and risk with a fixed safety value. The efficient frontier of the model is generated using the augmented \(\epsilon\)-constraint method on the GAMS software. We simultaneously solve the ratio optimization problem which maximizes the ratio of mean return over mean-absolute semideviation with same minimax value in the safety constraint. Subsequently, we choose two portfolios on the above generated efficient frontier such that the risk from one of them is less and the mean return from other portfolio is more than the respective quantities of the optimal portfolio from the ratio optimization model. Extensive computational results and in-sample and out-of-sample analysis are provided to compare the financial performance of the optimal portfolios selected by our proposed model with that of the optimal portfolios from the existing minimax and mean-absolute semideviation portfolio optimization models on real data from S&P CNX Nifty index.

MSC:

91G10 Portfolio theory
90C47 Minimax problems in mathematical programming
90C05 Linear programming

Software:

GAMS
Full Text: DOI

References:

[1] Fishburn PC, Am. Econ. Rev 59 pp 116– (1977)
[2] Group of Thirty, Derivatives: practices and principles (1994)
[3] DOI: 10.1287/mnsc.37.5.519 · doi:10.1287/mnsc.37.5.519
[4] DOI: 10.2307/2975974 · doi:10.2307/2975974
[5] Rockafeller RT, Risk 2 pp 21– (2000) · doi:10.21314/JOR.2000.038
[6] DOI: 10.1016/S0378-4266(02)00271-6 · doi:10.1016/S0378-4266(02)00271-6
[7] DOI: 10.2307/2329860 · doi:10.2307/2329860
[8] Sharpe WF, Manage 49 pp 49– (1994)
[9] Yitzhaki S, Am. Econ. Rev 72 pp 178– (1977)
[10] DOI: 10.1287/mnsc.44.5.673 · Zbl 0999.91043 · doi:10.1287/mnsc.44.5.673
[11] Von Neumann J, Theory of games and economic behaviour (1947) · Zbl 1241.91002
[12] Hadar J, Am. Econ. Rev 59 pp 25– (1969)
[13] Kroll Y, Res. Finance 2 pp 163– (1980)
[14] DOI: 10.1287/mnsc.38.4.555 · Zbl 0764.90004 · doi:10.1287/mnsc.38.4.555
[15] DOI: 10.2307/2295819 · doi:10.2307/2295819
[16] DOI: 10.1016/S0377-2217(98)00167-2 · Zbl 1007.91513 · doi:10.1016/S0377-2217(98)00167-2
[17] DOI: 10.1007/PL00011396 · doi:10.1007/PL00011396
[18] Whitmore GA, Am. Econ. Rev 60 pp 457– (1970)
[19] DOI: 10.1002/nav.1 · Zbl 1130.91342 · doi:10.1002/nav.1
[20] Speranza MG. Linear models for portfolio selection and their application to the Milano stock market. Financial Modelling, Contribution to Management Science Series. Springer, Heidelberg. Physica-Verlag; 1994. p. 320–333.
[21] Markowitz HM, Portfolio selection: efficient diversification of investments (1959)
[22] Markowitz HM, Mean-variance analysis in portfolio choice and capital markets (1987) · Zbl 0757.90003
[23] DOI: 10.2469/faj.v47.n5.28 · doi:10.2469/faj.v47.n5.28
[24] DOI: 10.1007/s10479-006-0142-4 · Zbl 1132.91497 · doi:10.1007/s10479-006-0142-4
[25] DOI: 10.2469/faj.v59.n5.2565 · doi:10.2469/faj.v59.n5.2565
[26] DOI: 10.1007/BF02282050 · Zbl 0785.90014 · doi:10.1007/BF02282050
[27] Konno H, J. Oper. Res. Soc. Jpn 38 pp 173– (1995)
[28] DOI: 10.1080/14697680701448456 · Zbl 1190.91139 · doi:10.1080/14697680701448456
[29] DOI: 10.1016/j.jbankfin.2006.07.015 · doi:10.1016/j.jbankfin.2006.07.015
[30] DOI: 10.1093/imaman/14.3.187 · Zbl 1115.91336 · doi:10.1093/imaman/14.3.187
[31] DOI: 10.1016/j.ejor.2010.09.018 · Zbl 1208.91140 · doi:10.1016/j.ejor.2010.09.018
[32] DOI: 10.1016/S0377-2217(02)00881-0 · Zbl 1043.91016 · doi:10.1016/S0377-2217(02)00881-0
[33] Hurson C, Euro Asia J. Manage 1 pp 69– (1995)
[34] DOI: 10.1016/S0377-2217(02)00774-9 · Zbl 1044.90043 · doi:10.1016/S0377-2217(02)00774-9
[35] DOI: 10.1080/02331930903085375 · Zbl 1203.91277 · doi:10.1080/02331930903085375
[36] DOI: 10.2307/1907413 · Zbl 0047.38805 · doi:10.2307/1907413
[37] DOI: 10.1016/j.amc.2009.03.037 · Zbl 1168.65029 · doi:10.1016/j.amc.2009.03.037
[38] Mansini R, Informatica 14 pp 37– (2003)
[39] Treynor J, Harvard Bus. Rev 43 pp 63– (1965)
[40] DOI: 10.3905/joi.3.3.59 · doi:10.3905/joi.3.3.59
[41] DOI: 10.1111/j.1540-6261.1968.tb00815.x · doi:10.1111/j.1540-6261.1968.tb00815.x
[42] DOI: 10.1111/1467-9965.00068 · Zbl 0980.91042 · doi:10.1111/1467-9965.00068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.