×

Holographic hierarchy in the Gaussian matrix model via the fuzzy sphere. (English) Zbl 1282.81144

Summary: The Gaussian Hermitian matrix model was recently proposed to have a dual string description with worldsheets mapping to a sphere target space. The correlators were written as sums over holomorphic (Belyi) maps from worldsheets to the two-dimensional sphere, branched over three points. We express the matrix model correlators by using the fuzzy sphere construction of matrix algebras, which can be interpreted as a string field theory description of the Belyi strings. This gives the correlators in terms of trivalent ribbon graphs that represent the couplings of irreducible representations of \(su(2)\), which can be evaluated in terms of \(3j\) and \(6j\) symbols. The Gaussian model perturbed by a cubic potential is then recognised as a generating function for Ponzano-Regge partition functions for 3-manifolds having the worldsheet as boundary, and equipped with boundary data determined by the ribbon graphs. This can be viewed as a holographic extension of the Belyi string worldsheets to membrane worldvolumes, forming part of a holographic hierarchy linking, via the large \(N\) expansion, the zero-dimensional QFT of the Matrix model to 2D strings and 3D membranes.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T75 Noncommutative geometry methods in quantum field theory

References:

[1] Bauer, M.; Itzykson, C., Triangulations, Discrete Math., 156, 29-81 (1996) · Zbl 0864.57013
[2] Looijenga, E., Intersection theory on Deligne-Mumford compactifications, Seminaire Bourbaki 35 (1992/1993). Seminaire Bourbaki 35 (1992/1993), Astérisque, 216, 187-212 (1993) · Zbl 0821.14005
[3] Koch, R.d. M.; Ramgoolam, S., From Matrix Models and quantum fields to Hurwitz space and the absolute Galois group
[4] Joubert, P., Geometric actions of the absolute galois group (2006), MSc thesis
[5] Schneps, L., The Grothendieck Theory of Dessins dʼEnfants (1994), Cambridge University Press · Zbl 0798.00001
[6] Gopakumar, R., What is the simplest gauge-string duality?
[7] Gopakumar, R.; Pius, R., Correlators in the simplest gauge-string duality · Zbl 1342.83371
[8] de Mello Koch, R.; Ramgoolam, S.; Wen, C., On the refined counting of graphs on surfaces · Zbl 1262.81120
[9] Madore, J., The fuzzy sphere, Classical Quantum Gravity, 9, 69 (1992) · Zbl 0742.53039
[10] Balachandran, A. P.; Dolan, B. P.; Lee, J.-H.; Martin, X.; OʼConnor, D., Fuzzy complex projective spaces and their star products, J. Geom. Phys., 43, 184-204 (2002) · Zbl 1007.51007
[11] Chu, C.-S.; Madore, J.; Steinacker, H., Scaling limits of the fuzzy sphere at one loop, JHEP, 0108, 038 (2001)
[12] Moussouris, J. P., Quantum models of space-time based on recoupling theory (1983), D. Phil. thesis
[13] Dowdall, R. J., Spin foam models for 3D quantum geometry (2011), University of Nottingham, PhD thesis
[14] Ruiz, H.-C., Toroidal spin networks: Towards a generalization of the decomposition theorem
[15] Dabholkar, A.; Murthy, S., Fundamental superstrings as holograms, JHEP, 0802, 034 (2008)
[16] Banks, T.; Fischler, W.; Shenker, S. H.; Susskind, L., M theory as a matrix model: A conjecture, Phys. Rev. D, 55, 5112 (1997)
[17] Seiberg, N., Why is the matrix model correct?, Phys. Rev. Lett., 79, 3577 (1997) · Zbl 0946.81062
[18] Sen, A., D0-branes on \(T^n\) and matrix theory, Adv. Theor. Math. Phys., 2, 51 (1998) · Zbl 0907.58087
[19] Aharony, O.; Berkooz, M.; Seiberg, N., Light-cone description of \((2, 0)\) superconformal theories in six dimensions, Adv. Theor. Math. Phys., 2, 119 (1998) · Zbl 0908.53046
[20] Lambert, N.; Papageorgakis, C.; Schmidt-Sommerfeld, M., Deconstructing \((2, 0)\) proposals
[21] Ginsparg, P. H.; Moore, G., Lectures on 2D gravity and 2D string theory (1992), TASI
[22] Itzhaki, N.; McGreevy, J., The large \(N\) harmonic oscillator as a string theory, Phys. Rev. D, 71, 025003 (2005)
[23] Corley, S.; Jevicki, A.; Ramgoolam, S., Exact correlators of giant gravitons from dual \(N = 4\) SYM theory, Adv. Theor. Math. Phys., 5, 809 (2002) · Zbl 1136.81406
[24] Berenstein, D., A toy model for the AdS/CFT correspondence, JHEP, 0407, 018 (2004)
[25] ʼt Hooft, G., A planar diagram theory for strong interactions, Nucl. Phys. B, 72, 461 (1974)
[27] Kryszewski, S.; Zachciał, M., Alternative representation of \(N \times N\) density matrix · Zbl 1098.81022
[28] Vaidya, S., Perturbative dynamics on the fuzzy \(S^2\) and \(R P^2\), Phys. Lett. B, 512, 403 (2001) · Zbl 0969.81594
[29] Iso, S.; Kimura, Y.; Tanaka, K.; Wakatsuki, K., Noncommutative gauge theory on fuzzy sphere from matrix model, Nucl. Phys. B, 604, 121 (2001) · Zbl 0983.81055
[30] Major, S. A., A spin network primer, Am. J. Phys., 67, 972 (1999) · Zbl 1219.83060
[31] Alexander, J. W., The combinatorial theory of complexes, Ann. of Math., 31 (1930) · JFM 56.0497.02
[32] Ponzano, G.; Regge, T., Semiclassical limit of Racah coefficients, (Spectroscopic and Group Theoretical Methods in Physics (1968), North-Holland: North-Holland Amsterdam), 1-58
[33] Barrett, J. W.; Naish-Guzman, I., The Ponzano-Regge model, Classical Quantum Gravity, 26, 155014 (2009) · Zbl 1172.83017
[34] Ruegg, H., A simple derivation of the quantum Clebsch Gordan coefficients for \(SU(2)_q\), J. Math. Phys., 31, 1085 (1990) · Zbl 0706.17007
[35] Turaev, V. G.; Viro, O. Y., State sum invariants of 3-manifolds and quantum \(6j\)-symbols, Topology, 31, 865-902 (1992) · Zbl 0779.57009
[36] Edmonds, A. R., Angular Momentum in Quantum Mechanics (1960), Princeton University Press · Zbl 0860.00016
[37] Rose, M. E., Elementary Theory of Angular Momentum (1957), Wiley · Zbl 0079.20102
[38] Kirillov, A. N.; Reshetikhin, N. Y., Representations of the Algebra \(U_q(sl(2)), q\)-Orthogonal Polynomials and Invariants of Links, Advanced Series in Mathematical Physics, vol. 7 (1989) · Zbl 0742.17018
[39] Pachner, U., P.L. homeomorphic manifolds are equivalent by elementary shellings, European J. Combin., 12 (1991) · Zbl 0729.52003
[40] Jaco, W.; Rubinstein, J. H., Layered-triangulations of 3-manifolds
[41] Freidel, L.; Krasnov, K., 2-D conformal field theories and holography, J. Math. Phys., 45, 2378 (2004) · Zbl 1071.81093
[42] Carlip, S., Quantum gravity in \(2 + 1\) dimensions: The case of a closed universe, Living Rev. Relativ., 8, 1 (2005) · Zbl 1071.83024
[43] Witten, E., Quantum field theory and the Jones polynomial, Comm. Math. Phys., 121, 351 (1989) · Zbl 0667.57005
[44] Witten, E., \((2 + 1)\)-Dimensional gravity as an exactly soluble system, Nucl. Phys. B, 311, 46 (1988) · Zbl 1258.83032
[45] Reshetikhin, N.; Turaev, V. G., Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math., 103, 547-597 (1991) · Zbl 0725.57007
[46] Turaev, V. G., Quantum Invariants of Knots and 3-Manifolds, De Gruyter Studies in Mathematics, vol. 18 (1994), Walter de Gruyter · Zbl 0812.57003
[47] Ooguri, H., Partition functions and topology changing amplitudes in the 3-D lattice gravity of Ponzano and Regge, Nucl. Phys. B, 382, 276 (1992) · Zbl 0968.82519
[48] Aharony, O.; Bergman, O.; Jafferis, D. L.; Maldacena, J., \(N = 6\) superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP, 0810, 091 (2008) · Zbl 1245.81130
[49] Szabo, R. J.; Tierz, M., Chern-Simons matrix models, two-dimensional Yang-Mills theory and the Sutherland model, J. Phys. A, 43, 265401 (2010) · Zbl 1229.81186
[50] Mariño, M., Chern-Simons theory, matrix integrals, and perturbative three manifold invariants, Comm. Math. Phys., 253, 25 (2004) · Zbl 1158.81353
[51] Grosse, H.; Madore, J.; Steinacker, H., Field theory on the \(q\)-deformed fuzzy sphere I, J. Geom. Phys., 38, 308 (2001) · Zbl 1130.81346
[52] Brown, T. W., Complex matrix model duality, Phys. Rev. D, 83, 085002 (2011)
[53] Brezin, E.; Kazakov, V. A., Exactly solvable field theories of closed strings, Phys. Lett. B, 236, 144 (1990)
[54] Douglas, M. R.; Shenker, S. H., Strings in less than one-dimension, Nucl. Phys. B, 335, 635 (1990)
[55] Gross, D. J.; Migdal, A. A., Nonperturbative two-dimensional quantum gravity, Phys. Rev. Lett., 64, 127 (1990) · Zbl 1050.81610
[56] Varshalovich, D. A.; Moskalev, A. N.; Khernsonsky, V. K., Quantum Theory Of Angular Momentum: Irreducible Tensors, Spherical Harmonics, Vector Coupling Coefficients, \(3 n j\) Symbols (1989), World Scientific · Zbl 0725.00003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.