×

Existence and multiplicity of solutions for some second-order systems on time scales with impulsive effects. (English) Zbl 1281.34134

Summary: We present a recent approach via variational methods and critical point theory to obtain the existence of solutions for the nonautonomous second-order system on time scales with impulsive effects
\[ \begin{aligned} & u^{\Delta^2}(t)+A(\sigma(t))u(\sigma(t))+\nabla F(\sigma(t),u(\sigma(t)))=0, \quad \Delta \text{-a.e.} \;t\in[0,T]^\kappa_\mathbb T; \\ & u(0)-u(T)=u^\Delta(0)-u^\Delta(T)=0,\\ & (u^i)^\Delta(t^+_j)-(u^i)^\Delta(t^-_j)=I_{ij}(u^i(t_j)), \;i=1,2,\dots,N,\,j=1,2,\dots,p, \end{aligned} \]
where \(t_0=0<t_1<t_2<\dots<t_p<t_{p+1}=T\), \(t_j\in [0,T]_\mathbb T \;( j=0,1,2,\dots,p+1)\), \(u(t)=(u^1(t),u^2(t),\dots,u^N(t))\in \mathbb R^N\), \(A(t)=[d_{lm}(t)]\) is a symmetric \(N\times N\) matrix-valued function defined on \([0,T]_\mathbb T\) with \(d_{lm}\in L^\infty([0,T]_\mathbb T, \mathbb R)\) for all \(l,m=1,2,\dots, N\), \(I_{ij}:\mathbb R\to \mathbb R \;(i=1,2,\dots,N,\, j=1,2,\dots,p)\) are continuous and \(F:[0,T]_\mathbb T\times \mathbb R^N\to \mathbb R\). Finally, two examples are presented to illustrate the feasibility and effectiveness of our results.

MSC:

34N05 Dynamic equations on time scales or measure chains
34B37 Boundary value problems with impulses for ordinary differential equations
58E30 Variational principles in infinite-dimensional spaces
58E50 Applications of variational problems in infinite-dimensional spaces to the sciences

References:

[1] doi:10.1016/j.na.2010.04.070 · Zbl 1201.46035 · doi:10.1016/j.na.2010.04.070
[2] doi:10.1016/j.na.2009.08.041 · Zbl 1193.34057 · doi:10.1016/j.na.2009.08.041
[3] doi:10.1016/j.nonrwa.2007.10.022 · Zbl 1167.34318 · doi:10.1016/j.nonrwa.2007.10.022
[4] doi:10.1016/S0893-9659(01)00163-X · Zbl 1022.34025 · doi:10.1016/S0893-9659(01)00163-X
[5] doi:10.1016/j.camwa.2007.10.019 · Zbl 1142.34362 · doi:10.1016/j.camwa.2007.10.019
[6] doi:10.1016/j.nonrwa.2011.03.002 · Zbl 1228.34128 · doi:10.1016/j.nonrwa.2011.03.002
[7] doi:10.1016/j.camwa.2011.01.042 · Zbl 1217.34042 · doi:10.1016/j.camwa.2011.01.042
[8] doi:10.1016/j.amc.2011.07.057 · Zbl 1247.34138 · doi:10.1016/j.amc.2011.07.057
[9] doi:10.1016/j.cnsns.2011.05.015 · Zbl 1251.34046 · doi:10.1016/j.cnsns.2011.05.015
[10] doi:10.1023/A:1008376427023 · Zbl 0980.93058 · doi:10.1023/A:1008376427023
[11] doi:10.1016/j.na.2007.10.038 · Zbl 1165.34013 · doi:10.1016/j.na.2007.10.038
[12] doi:10.1016/j.amc.2007.05.056 · Zbl 1135.39009 · doi:10.1016/j.amc.2007.05.056
[13] doi:10.1016/j.camwa.2008.02.038 · Zbl 1155.34313 · doi:10.1016/j.camwa.2008.02.038
[14] doi:10.1016/j.cnsns.2007.08.006 · Zbl 1221.34249 · doi:10.1016/j.cnsns.2007.08.006
[15] doi:10.1016/j.na.2012.03.003 · Zbl 1242.34160 · doi:10.1016/j.na.2012.03.003
[16] doi:10.1016/j.na.2005.01.108 · Zbl 1071.34039 · doi:10.1016/j.na.2005.01.108
[17] doi:10.1002/mana.200410420 · Zbl 1117.58007 · doi:10.1002/mana.200410420
[18] doi:10.1002/cpa.3160310203 · doi:10.1002/cpa.3160310203
[19] doi:10.1016/j.na.2006.12.043 · Zbl 1141.34011 · doi:10.1016/j.na.2006.12.043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.