×

Periodic boundary value problems for first-order impulsive dynamic equations on time scales. (English) Zbl 1165.34013

The authors consider the periodic boundary value problem for the first order dynamic equation on time scales
\[ \begin{aligned} &y^\triangle(t) = f(t,y(t)), \quad t \in [0,T]\cap{\mathbb T}, t \neq t_k, k = 1,\ldots,m,\\ &y(t_k^+) - y(t_k^-) = I_k(y(t_k^-)), \quad k = 1,\dots,m,\\ &y(0) = y(\sigma(T)), \end{aligned} \]
where \({\mathbb T}\) is a time scale, \(t_k \in {\mathbb T}\) for \(k = 1,\ldots,m\) are impulse points (\(0 < t_1 < \ldots < t_m < T\)), \(\sigma\) is the jump operator. New sufficient conditions for the existence of extremal solutions to this problem are obtained. The results are obtained by using the lower and upper solutions method and monotone iterative technique.

MSC:

34B37 Boundary value problems with impulses for ordinary differential equations
39A10 Additive difference equations
Full Text: DOI

References:

[1] Agarwal, R. P.; Bohner, M., Basic calculus on time scales and some of its applications, Results Math., 35, 3-22 (1999) · Zbl 0927.39003
[2] Agarwal, R. P.; Bohner, M.; O’Regan, D.; Peterson, A., Dynamic equations on time scales: A survey, J. Comput. Appl. Math., 141, 1-26 (2002) · Zbl 1020.39008
[3] Atici, F. M.; Biles, D. C., First and second order dynamic equations with impulse, Adv. Difference Equ., 2, 119-132 (2005) · Zbl 1100.39018
[4] Belarbi, A.; Benchohra, M.; Ouahab, A., Extremal solutions for impulsive dynamic equations on time scales, Comm. Appl. Nonlinear Anal., 12, 85-95 (2005) · Zbl 1093.34002
[5] Benchohra, M.; Ntouyas, S. K.; Ouahab, A., Existence results for second-order boundary value problem of impulsive dynamic equations on time scales, J. Math. Anal. Appl., 296, 65-73 (2004) · Zbl 1060.34017
[6] Benchohra, M.; Ntouyas, S. K.; Ouahab, A., Extremal solutions of second order impulsive dynamic equations on time scales, J. Math. Anal. Appl., 324, 425-434 (2006) · Zbl 1112.34007
[7] Bohner, M.; Peterson, A., Dynamic Equations on Time Scales (2001), Birkhauser: Birkhauser Boston · Zbl 1021.34005
[8] Bohner, M.; Peterson, A., Advances in Dynamic Equations on Time Scales (2003), Birkhauser: Birkhauser Boston · Zbl 1025.34001
[9] Chen, L.; Sun, J., Nonlinear boundary value problem for first order impulsive integro-differential equations of mixed type, J. Math. Anal. Appl., 325, 830-842 (2007) · Zbl 1106.45002
[10] Ding, W.; Mi, J.; Han, M., Periodic boundary value problems for the first order impulsive functional differential equations, Appl. Math. Comput., 165, 433-446 (2005) · Zbl 1081.34081
[11] Gao, S.; Chen, L.; Nieto, J. J.; Torres, A., Analysis of a delayed epidemic model with pulse vaccination and saturation incidence, Vaccine, 24, 6037-6045 (2006)
[12] Ge, W., The persistence of nonoscillatory solutions of difference equations under impulsive perturbations, Comput. Math. Appl., 50, 1579-1586 (2005) · Zbl 1088.39010
[13] Geng, F.; Zhu, D.; Lu, Q., A New Existence result for impulsive dynamic equations on time scales, Appl. Math. Lett., 20, 206-212 (2007) · Zbl 1112.34308
[14] He, Z.; Zhang, X., Monotone iterative technique for first order impulsive difference equations with periodic boundary conditions, Appl. Math. Comput., 156, 605-620 (2004) · Zbl 1069.39002
[15] Heikkila, S.; Lakshmikantham, V., Monotone Iterative Techniques for Discontinuous Nonlinear Dikerential Equations (1994), Marcel Dekker, Inc.: Marcel Dekker, Inc. New York · Zbl 0804.34001
[16] Henderson, J., Double solutions of impulsive dynamic boundary value problems on a time scale, J. Difference Equ. Appl., 8, 345-356 (2002) · Zbl 1003.39019
[17] Hilger, S., Analysis on a measure chain—a unified approach to continuous and discrete calculus, Results Math., 18, 18-56 (1990) · Zbl 0722.39001
[18] Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S., Theory of Impulsive Differential Equations (1989), Word Scientific: Word Scientific Singapore · Zbl 0719.34002
[19] Li, J.; Nieto, J. J.; Shen, J., Impulsive periodic boundary value problems of first-order differential equations, J. Math. Anal. Appl., 325, 226-236 (2007) · Zbl 1110.34019
[20] Nieto, J. J., Basic theory for nonresonance impulsive periodic problems of first order, J. Math. Anal. Appl., 205, 423-433 (1997) · Zbl 0870.34009
[21] Nieto, J. J.; Rodriguez-Lopez, R., Existence and approximation of solutions for nonlinear functional differential equations with periodic boundary vlaue conditions, J. Comput. Appl. Math., 40, 433-442 (2000) · Zbl 0958.34055
[22] Nieto, J. J.; Rodriguez-Lopez, R., Remarks on periodic boundary value problems for functional differential equations, J. Comput. Appl. Math., 158, 339-353 (2003) · Zbl 1036.65058
[23] Nieto, J. J.; Rodriguez-Lopez, R., Periodic boundary value problem for non-Lipschitzian impulsive functional differential equations, J. Math. Anal. Appl., 318, 593-610 (2006) · Zbl 1101.34051
[24] Nieto, J. J., Periodic boundary value problems for first-order impulsive ordinary differential equations, Nonlinear Anal., 51, 1223-1232 (2002) · Zbl 1015.34010
[25] Li, J.; Shen, J., Periodic boundary value problems for delay differential equations with impulses, J. Comput. Appl. Math., 193, 563-573 (2006) · Zbl 1101.34050
[26] Nieto, J. J.; Rodriguez-Lopez, R., New comparison results for impulsive integro-differential equations and applications, J. Math. Anal. Appl., 328, 1343-1368 (2007) · Zbl 1113.45007
[27] Tang, S.; Cheke, R. A.; Xiao, Y., Optimal impulsive harvesting on non-autonomous BevertonHolt difference equations, Nonlinear Anal., 65, 2311-2341 (2006) · Zbl 1119.39011
[28] X. Yang, J. Shen, Periodic boundary value problems for second-order impulsive integro-differential equations, J. Comput. Appl. Math., in press (doi:10.1016/j.cam.2006.10.082; X. Yang, J. Shen, Periodic boundary value problems for second-order impulsive integro-differential equations, J. Comput. Appl. Math., in press (doi:10.1016/j.cam.2006.10.082 · Zbl 1155.45007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.